===== ММ269 ===== **Конкурсная задача ММ269** (11 баллов) Какова максимальная возможная степень вершины выпуклого многогранника\\ a) класса 3;\\ b) класса 4? **Решение** Привожу решения {{:marathon:mm269_polubasoff.pdf|Олега Полубасова}}, {{:marathon:kazmerchuk_mm_269.pdf|Анатолия Казмерчука}} и {{:marathon:shamsutdinov_mm269.docx|Константина Шамсутдинова}}. **Обсуждение** Согласно традициям Марафона последние задачи каждого конкурса имеют повышенную сложность. Эта традиция сохранилась и в данном конкурсе. Результатом этого усложнения чаще всего был отток значительной части конкурсантов. А эта традиция неожиданно была нарушена! Из тех, кто регулярно участвовал в нынешнем конкурсе, не прислали решения ММ269 всего два человека. А остальные порадовали, но не пощадили ведущего :-) Впрочем, после моей мольбы, все же сжалились, сократив самое длинное из решений на 40(!) страниц. Разумеется, основные страсти кипели вокруг обобщения задачи, очевидного по постановке вопроса. Но только по постановке. Да-да, ответ 3m-3 не годится! В какой-то момент у меня имелось три решения, в которых приводилась и обосновывалась точная формула для максимальной возможной степени вершины m-многогранника. Точнее, три разных формулы, дающих разные ответы :-)\\ Понимая, что ситуация, когда "Вася и Петя оба правы", маловероятна, ведущий был вынужден углубиться в многостраничные трактаты, воспользовавшись удачно подвернувшейся просьбой продлить срок приема решений. Дополнительное время не пропало даром. И ведущий и конкурсанты обнаружили некоторые ошибки и неточности в решениях. Во всех, кроме одного, в котором ошибок найти не удалось (или, все же, пока не удалось?). Желающие могут попробовать определить это решение из приводимого ниже списка начисленных призовых баллов (а также попытаться найти ошибки и в этом решении). **Награды** За решение задачи ММ269 участники Марафона получают следующие призовые баллы: \\ Олег Полубасов - 18;\\ Мераб Левиашвили - 16;\\ Анатолий Казмерчук - 13;\\ Константин Шамсутдинов - 13;\\ Василий Дзюбенко - 11;\\ Александр Романов - 11;\\ Виктор Филимоненков - 11;\\ Денис Овчинников - 7. **Эстетическая оценка задачи - 4.7 балла** ----