===== 159 ===== **Конкурсная задача ММ159** (6 баллов) Для натурального числа n, большего 1, обозначим через qu(n) отношение суммы количеств единиц во всех записях числа n в системах счисления с натуральными основаниями, большими 1, к самому числу n. Найти наибольшее и наименьшее значение qu(n) и предел qu(n) при n, стремящимся к бесконечности. Конечны ли множества чисел, для которых qu(n): меньше 1; больше 1; равно 1? **Решение** Пусть g - основание системы счисления. При g>n число n будет записываться одной цифрой, отличной от 1. Поэтому суммарное число единиц во всех записях n конечно. Очевидно, что при n/2 < g ≤ n n будет двухзначным, причем первая цифра будет 1. При g = n-1 единицами будут обе цифры в записи n. Поэтому при n > 2 qu(n) > 1/2. В то же время, qu(2) = 1/2. Значит, наименьшее значение qu(n) равно 1/2.\\ Для sqrt{n} < g <= n/2 n по-прежнему двузначно, но первая цифра отлична от единицы, а вторая не может быть единицей часто. Суммарное количество всех цифр (и, тем более, всех единиц) во всех записях n с основаниями 2 <= g <= sqrt{n} с ростом n растет медленнее, чем n/2.\\ Из этих соображений следует простой план решения задачи: показать, что lim{n right infty}{qu(n)}=1/2; найти какое-то n0, что для всех n > n0 qu(n) < 1, и перебрать значения qu(n) для n, не превосходящих nsub<>0. Наименьшим количеством перебираемых n удалось обойтись Олегу Полубасову. Познакомиться с его решением можно {{:marathon:ans159.pdf|:здесь}}. Ответ:\\ наименьшее значение qu(2) = 1/2;\\ наибольшее значение qu(7) = 9/7;\\ lim{n right infty}{qu(n)}=1/2;\\ при n ∈ {5, 7, 9, 11, 13, 31} значение qu(n) больше 1;\\ при n ∈ {3, 4, 6, 10, 15, 21} значение qu(n) равно 1;\\ при остальных n значение qu(n) меньше 1. \\ **Обсуждение** Я ожидал, что кто-либо из участников по традиции обобщит задачу ММ159. Тем более, что естественные обобщения напрашиваются. Однако, не дождался. Придется самому. Обозначим через quc(n) отношение суммарного количества цифр "c" в записях натурального числа n (n>c) во всех системах счисления с натуральными основаниями g (g>1) к самому числу n.\\ Легко видеть, что при c> 1 quc(n) = 0, для всех n\in {c+1, c+2,..., 2c}. Не сложно доказывается и то, что lim{n right infty}{qu_c(n)}=1/{c(c-1)}. Причем при достаточно больших n значение quc(n) всегда больше этого предела. Особняком стоит случай c=0. lim{n right infty}{qu_0(n)}=0. Однако стремление к нулю очень неравномерное, с резкими всплесками на числах, имеющих много мелких делителей. Более содержательным представляется вопрос о наибольших значениях quc(n) при различных c. Обозначим через mqu(c) наибольшее значение функции quc(n). Ниже приведена таблица значений mqu(c) для небольших c (во втором столбце указаны n, при которых достигается наибольшее значение; в третьем - суммарное количество цифр "c" в записях этого n). ^c ^ n ^ Σ ^ mq(c)^ |0 | 4 | 3 | 3/4| |1 | 7 | 9 | 9/7| |2 | 26 | 14 | 7/13| |3 | 15 | 5 | 1/3| |4 | 28 | 6 | 3/14| |5 | 35 | 6 | 6/35| |6 | 54 | 7 | 7/54| |7 | 79 | 9 | 9/79| |8 | 80 | 8 | 1/10| |9 | 69 | 6 | 2/23| |10 | 130 | 10 | 1/13| |11 | 71 | 5 | 5/71| |12 | 192 | 11 | 11/192| |13 | 73 | 4 | 4/73| |14 | 74 | 4 | 2/37| |15 | 63 | 3 | 1/21| Полагаю второй и третий столбцы этой таблицы - достойные кандидаты в OEIS. //Гипотеза 1.// При c>0 mqu(c) строго монотонна.\\ //Гипотеза 2.// При каждом c существует единственное значение n, при котором достигается наибольшее значение quc(n).\\ //Гипотеза 3.// Значения n, для которых quc(n) достигает mqu(c) уникальны (не повторятся при других c). Для больших c mqu(c) существуют целые участки, где mqu(c) ведет себя закономерно. Вот пример такого поведения: ^c ^ n ^ Σ ^ |54 | 474 | 7 | |55 | 475 | 7 | |56 | 476 | 7 | |57 | 477 | 7 | |58 | 478 | 7 | |59 | 479 | 7 | По-видимому, с ростом c такие участки будут встречаться все чаще и иметь все большую длину. **Награды** За правильное (и наименее зависящее от компьютерного перебора) решение задачи ММ159 Олег Полубасов получает 7 призовых баллов. За верное решение Виктор Филимоненков, Алексей Волошин, Сергей Половинкин и Анатолий Казмерчук получают по 6 призовых баллов. **Эстетическая оценка задачи - балла** //Разбор задачи ММ159 подготовил Владимир Лецко// ----