Конкурсная задача ММ276 (7 баллов)
Треугольные параболы
Рассмотрим 3 параболы, связанных с треугольником. Фокус каждой - одна из вершин, а директриса - прямая, содержащая противоположную сторону. Сколько точек пересечения могут иметь эти параболы?
Решение
Привожу решения Дениса Овчинникова (аналитическое) и Мераба Левиашвили (геометрическое).
Обсуждение
Присланные решения можно условно разделить на две категории: аналитические и геометрические. Вторые показались красивее и были поощрены дополнительным баллом.
Судя по эстетическим оценкам, эта задача пока лучшая в текущем конкурсе. Разделяю это мнение.
После того, как обобщения и аналоги исходной задачи перестали поощряться дополнительными баллами, конкурсанты не стали усердствовать в этом направлении. Но аналоги и смежные задачи от этого никуда не делись. В частности, интересен следующий факт: точки пересечения рассматриваемых парабол со сторонами треугольника принадлежат одному эллипсу. Обнаружив этот факт, я нисколько не сомневался, что он известен. Так и оказалось. Неожиданным было другое: по-видимому, он стал известен совсем недавно. Вот ссылка https://groups.io/g/euclid/message/806 на заметку Цезаря Лосады. По ней можно найти ссылки на Эммануэля Гарсию и Барри Уолка. Их публикация датирована декабрем 2019 года. Ничего более раннего я не обнаружил. Возможно, это удастся кому-ту из конкурсантов или болельщиков.
Любопытен и такой аналог наблюдения из предыдущего абзаца. Рассмотрим три параболы, фокусом каждой из которых является какая-нибудь замечательная точка треугольника, а директрисами - прямые содержащие стороны. (Беглый и не слишком аккуратный) анализ показывает, что, в зависимости от выбора заметательной точки, 6 точек пересечения этих парабол со сторонами (продолжениями сторон) исходного треугольника могут лежать или не лежать на одной кривой второго порядка. Тем самым, одни замечательные точки «более замечательны», чем другие.
В общем, интересных вопросов - море.
Награды
За решение задачи ММ276 конкурсантам начислены следующие призовые баллы:
Мераб Левиашвили - 8;
Виктор Филимоненков - 8;
Константин Шамсутдинов - 8;
Владислав Франк - 7;
Денис Овчинников - 7.
Эстетическая оценка задачи - 4.8 балла