Конкурсная задача ММ278 (6 баллов)
Правильные в правильных
Назовем сечение выпуклого многогранника диагональным, если каждая сторона многоугольника сечения является диагональю грани. Какие многоугольники могут быть диагональными сечениями правильных многогранников?
Решение
Привожу решения Константина Шамсутдинова (краткое) и Мераба Левиашвили (подробное).
Обсуждение
Большинство конкурсантов прислали решения значительно проще авторского. Я сразу нашел в додекаэдре треугольное (вторые концы трех ребер, имеющих общую вершину), квадратное (вторые концы ребер, смежных данному ребру) и пятиугольное (вторые концы ребер, исходящих из вершин пятиугольной грани) сечения, а затем потратил некоторые усилия на проверку отсутствия других подходящих сечений, пройдя мимо очевидного факта равноправия всех диагоналей граней додекаэдра.
Награды
За решение задачи ММ277 конкурсантам начислены следующие призовые баллы:
Мераб Левиашвили - 6;
Виктор Филимоненков - 6;
Константин Шамсутдинов - 6;
Денис Овчинников - 6;
Владислав Франк - 3 (Влад ухитрился потерять пятиугольные сечения додекаэдра).
Эстетическая оценка задачи - 3.9 балла