Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Математический марафон


Завершился 22-й конкурс в рамках Математического марафона

Победу в конкурсе одержал Олег Полубасов, в упорной борьбе ненамного опередив Анатолия Казмерчука. Третье место уверенно занял вернувшийся после длительного отсутствия Владислав Франк.

Мои поздравления победителям!

Новый конкурс стартует в 2017 году.

Стать участником марафона может любой желающий. Некоторые задачи вполне доступны школьникам. Для решения других требуются знания, выходящие за рамки школьного курса. Одни задачи могут показаться вам интересными, а другие - не очень. На вкус и на цвет…

Но если любите поломать голову над нестандартными задачами, участвуйте, не стесняйтесь.

Жду от вас комментариев марафонских задач, а также пожеланий Марафону. Эта обратная связь позволит сделать Марафон интереснее для вас.

Не забывайте, пожалуйста, присылать вместе с Вашими решениями свои эстетические оценки задач по пятибалльной шкале.


Ведущий Марафона — Vladimir letsko


Текущие задачи

Пока нет. Но будут.


Разбор задач


ММ220

Конкурсная задача ММ220 (15 баллов)

Найти наименьшее v такое, что существует многогранник, имеющий v вершин и 2016 диагоналей, а многогранника, имеющего v+1 вершину и 2016 диагоналей, не существует.

Решение

Привожу все поступившие решения этой трудной задачи: Анатолия Казмерчука, Олега Полубасова и Владислава Франка (как обычно сохранившего в итоговом решении весь тернистый путь к нему).
В качестве авторского решения привожу текст доклада, написанного под моим руководством Михаилом Корневым при участии Ивана Кравченко. Доклад имеет отношение не только к ММ220, но и еще к восьми задачам конкурса. Ответ к разбираемой задаче легко получается применением формул, выведенных во втором параграфе.

Обсуждение

До финиша 22-го марафонского конкурса добрались 3 (с лишним ;-))участника. С учетом тенденций прошлых конкурсов и сложности заключительной задачи такой итог был вполне предсказуем, хотя ведущий, с присущим ему оптимизмом, до последнего надеялся на лучшее.

Как это часто практикуется в Марафоне, вопрос задачи ММ220 был частным. Но в данном случае обобщение задачи не только естественно, но, по сути, необходимо. Поскольку проще всего искать ответ к задаче, исследуя вопрос о возможных количествах диагоналей многогранников с фиксированным числом вершин в общем виде. В связи с этим обстоятельством прибавки за обобщение и рассмотрение других случаев задачи несущественны по отношению к базовой стоимости.

Возможные количества диагоналей, а также мощности множеств возможных количеств диагоналей для относительно небольших значений v приведены здесь: Приложения. Интересно, что вторая из этих последовательностей обнаружилась в OEIS: A023536. При этом в описании последовательности никакие диагонали многогранников не упоминались.
В связи с нынешним конкурсом в OEIS появился и целый ряд новых последовательностей:
A279015 - наибольшее возможное количество диагоналей многогранников с данным числом граней;
A279019 - наименьшее возможное количество диагоналей простых многогранников с данным числом граней;
A279022 - наибольшее возможное количество диагоналей многогранников с данным числом ребер;
A279647 - возможные значения количеств диагоналей многогранников с данным числом граней;
A279679 - возможные значения количеств диагоналей многогранников с данным числом ребер;
A279681 - возможные значения количеств диагоналей многогранников с данным числом вершин.

В этом списке не хватает не только тривиальных случаев, типа «Наименьшее возможное количество диагоналей многогранников с данным числом граней (вершин)», но и нескольких содержательных вариаций. Наибольшие возможные количества диагоналей многогранников с данным числом вершин описываются треугольными числами. А вот , например, вопрос о наименьшем возможном количестве диагоналей простых многогранников с данным числом вершин (коих в данном случае, разумеется должно быть четное число) ждет своего исследователя.

Любопытно, что исчерпывающее описание возможных значений количеств диагоналей многогранников с данным числом вершин удалось получить вопреки тому обстоятельству, что задача существования многогранников с требуемым вектором граней (участвующим в формуле подсчета числа диагоналей) в общем виде (насколько мне известно) до сих пор не решена. (Отмечу, что условия (2) - (5) из решения Олега Полубасова, насколько я могу судить, не дают решения для общего случая.)

Я пробовал применить технику (введение параметра, отвечающего за количество вершин вне грани с наибольшим числом сторон), приведшую к полному описанию возможных значений количеств диагоналей многогранников с данным числом вершин, к аналогичным задачам в случаях, когда фиксируется количество граней или ребер. Но ничего хорошего из этого не вышло. Вместо отрезков натурального ряда, сплошь заполненных возможными значениями, возникает какое-то решето :-( Возможно, иной подход окажется удачнее. Но «ручное» вычисление начальных значений A279647 и A279679 оптимизма не внушает - каких-либо закономерностей не видно.

Награды

За решение и обобщение ММ220 Анатолий Казмерчук получает 17 призовых баллов, а Олег Полубасов и Владислав Франк - по 15 призовых баллов.
За некоторые соображения по решению Владимир Чубанов получает 3 призовых балла.

Эстетическая оценка задачи - 4.7 балла


ММ219

Конкурсная задача ММ219 (8 баллов)

Какое наибольшее количество диагоналей может иметь одиннадцатигранник?

Решение задачи ММ219


ММ218

Конкурсная задача ММ218 (5 баллов)

Найти наименьшее возможное количество диагоналей многогранника, имеющего 2017 ребер.

Решение задачи ММ218


ММ217

Конкурсная задача ММ217 (6 баллов)

Диагонали AC1 и BD1 шестигранника ABCDA1B1C1D1, все грани которого четырехугольны, пересекаются в точке O. Могут ли остальные пары диагоналей скрещиваться?

Решение задачи ММ217


ММ216

Конкурсная задача ММ216 (10 баллов)

Назовем натуральное число n красивым, если наименьшее натуральное число, имеющее ровно n натуральных делителей, кратно n.
1. Доказать, что все праймориалы красивы.
2. Верно ли, что все факториалы красивы?
3. Сколько существует красивых чисел вида k7, где k - некоторое натуральное число?
4. Сколько существует красивых чисел вида 7k, где k - некоторое натуральное число?

Решение задачи ММ216


ММ215

Конкурсная задача ММ215 (4 балла)

На какое наименьшее количество тетраэдров можно разрезать шестиугольную призму?

Решение задачи ММ215


ММ214

Конкурсная задача ММ214 (4 балла)

1. Все грани многогранника - n-угольники. При каких n это возможно?
2. При каком наименьшем числе граней существует многогранник, все грани которого пятиугольны?

Решение задачи ММ214


ММ213

Конкурсная задача ММ213 (4 балла)

1. Пусть H = {h1, h_2,…, hf} , где f - количество граней, а hi - число сторон i -й грани. Какое наименьшее значение может принимать f-|H| ?
2. Пусть gi означает число i-угольных граней многогранника для каждого значения i . Могут ли все gi не превышать 2?

Решение задачи ММ213


ММ212

Конкурсная задача ММ212 (4 балла)

Доказать, что любой многогранник, имеющий 2016 вершин, может быть разрезан на 4030 тетраэдров.

Решение

Решение задачи ММ212


ММ211

Конкурсная задача ММ211 (3 балла)

Доказать, что при любом четном f > 4 существует многогранник, имеющий f граней, все грани которого четырехугольники.

Решение задачи ММ211


 

 


Страница: [[marathon:about]]

marathon/about.1484584422.txt · Последние изменения: 2017/01/16 19:33 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006