Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Математический марафон


Продолжается 23-й конкурс в рамках Математического марафона

Какой-то единой тематикой задачи 23-го конкурса не объединены. Однако, легко разбить конкурсные задачи на три группы. Две из них посвящены традиционно любимым ведущим арифметике и комбинаторной геометрии. Третью можно условно озаглавить «Сон абитуриента в ночь перед ЕГЭ». Окажется ли этот сон кошмарным, скоро узнаем.

Выполняя взятые на себя обязательства, я постарался сделать задачи не слишком трудными. Впрочем, это замечание не касается последней задачи (оценка трудности которой - сама по себе трудная задача).

Еще одна цель, которую я преследовал, составляя задачи - избавиться от чрезмерного перекоса в сторону компьютерщины. Впрочем, от самого компьютера участникам избавляться не стоит, кое-где он пригодится.

Более ранний, по сравнению с предыдущими, старт конкурса не окажет существенного влияния на его дальнейший календарь. Как обычно, активная фаза конкурса начнется осенью. Это не значит, что нельзя решать задачи и присылать решения уже сейчас.Стать участником марафона может любой желающий. Некоторые задачи вполне доступны школьникам. Для решения других требуются знания, выходящие за рамки школьного курса. Одни задачи могут показаться вам интересными, а другие - не очень. На вкус и на цвет…

Но если любите поломать голову над нестандартными задачами, участвуйте, не стесняйтесь.

Жду от вас комментариев марафонских задач, а также пожеланий Марафону. Эта обратная связь позволит сделать Марафон интереснее для вас.

Не забывайте, пожалуйста, присылать вместе с Вашими решениями свои эстетические оценки задач по пятибалльной шкале.


Ведущий Марафона — Vladimir letsko


Текущие задачи

Терминология ММ228-230

Несколько (не менее трех) прямых на плоскости называются прямыми общего положения, если любые 3 их них высекают треугольник. На рисунке 1 представлены 7 прямых общего положения.

Внешним контуром конфигурации n прямых общего положения назовем многоугольник, высекаемый данными прямыми. На рисунке 1 это красный девятиугольник ABCDEFGHJ.
Внешним циклом конфигурации назовем список количеств вершин внешних областей конфигурации, перечисленных в порядке обхода этих областей (направление и начало обхода не важны). Внешний цикл конфигурации, представленной на рисунке 1: (1, 2, 3, 3, 1, 3, 1, 5, 1, 2, 2, 2, 2, 2).
Выпуклыми вершинами внешнего контура назовем вершины, в которых углы меньше развернутого. На рисунке 1 выпуклыми вершинами являются A, C, E, J.
Обратными вершинами назовем вершины внешнего контура, углы при которых больше развернутого. На рисунке 1 это вершины B, D, F, G, H.
Элементарными отрезками назовем отрезки, концы которых являются соседним точками пересечения одной из прямых конфигурации с другими прямыми. Отрезок CD на рисунке 1 элементарен, а отрезок BC – нет.
Элементарными многоугольниками назовем многоугольники, стороны которых являются элементарными отрезками (одна сторона – один отрезок). Например, треугольник DEF на рисунке 1 элементарен, а треугольник BCD – нет.
Впадиной назовем участок внешнего контура между двумя соседними выпуклыми вершинами, содержащий хотя бы одну обратную вершину. Конфигурация, изображенная на рисунке 1 имеет 3 впадины ABC, CDE и EFGHJ.
Вектором граней конфигурации назовем упорядоченный набор из n-2 чисел (где n – количество прямых), первое из которых равно количеству элементарных треугольников, второе – количеству элементарных четырехугольников и т. д. Вектор граней конфигурации, представленной на рисунке 1 – [6, 8, 1, 0, 0].


ММ229

Конкурсная задача ММ229 (7 баллов) Решения принимаются до 03.11.2017

Петя нарисовал на доске несколько прямых общего положения так, что все попарные точки пересечения прямых попали на чертеж.
Вася выписал себе в тетрадь внешний цикл возникшей конфигурации: (1, 4, 3, 1, 4, 1, 2, 2, 3, 2, 3, 1, 2, 3, 1, 2, 4, 2, 1, 3).
После этого Петя стер рисунок. Сможет ли Вася восстановить:
1) количество прямых;
2) количество элементарных многоугольников:
3) количество выпуклых вершин;
4) количество элементарных отрезков, ограничивающих внешний контур;
5) количество сторон выпуклой оболочки внешнего контура;
6) суммарное число сторон элементарных многоугольников;
7) количество обратных вершин;
8) количество впадин;
9) количество сторон внешнего контура?

Примечание: Вася – умный.


ММ230

Конкурсная задача ММ230 (15 баллов) Решения принимаются до 01.12.2017

Может ли вектор граней конфигурации нескольких прямых общего положения начинаться с чисел 157, 5250, 52?


Разбор задач


ММ228

Конкурсная задача ММ228 (4 балла)

Какое наименьшее число элементарных четырехугольников может быть в конфигурации из семи прямых общего положения?

Решение

Привожу решения Анатолия Казмерчука (часть I, часть II, часть III) и Олега Полубасова.

Обсуждение

Уже который год подряд в Марафоне наблюдается одна и та же тенденция: к концу конкурса значительная часть выдыхается и сходит с дистанции. В нынешнем конкурсе дистанция в 7 задач была пройдена достаточно дружно. Но в ММ228 обозначенная тенденция проявилась в полный рост - получено лишь 4 ответа.
И это при том, что эта задачка была запланирована в качестве легкого «разогрева» (или, если хотите пропедевтики) перед ММ229 и ММ230.

Большинство подобных задач решаются методом «пример+оценка». А для ММ228 достаточно лишь примера. Поэтому весьма сложная в целом задача о возможных количествах тех или иных многоугольников, возникающих при разбиении плоскости прямыми (многоугольника диагоналями и т.п.) в данном конкретном случае тривиализируется.

Направления для обобщений и аналогий ММ228 довольно очевидны. А вот ответы на возникающие при этом вопросы в основном совсем не очевидны.
Анатолий Казмерчук ограничился исследованием конфигураций из меньшего числа прямых и предъявлением всех возможных количеств четырехугольников для 7 прямых.
Олег Полубасов получил точное значение для наибольшего возможного числа четырехугольников в общем случае, опираясь на известный факт о наименьшем возможном количестве треугольников.

Однако никто из марафонцев не замахнулся (или замахнулся, но не ударил) на поиск наименьшего числа четырехугольников для более чем 7-и прямых. Попробую хотя бы частично этот пробел.
Если я не ошибся при достаточно тупом переборном обосновании, для 8-и прямых наименьшее число четырехугольников - 1.
Похоже, для 9-и прямых ответ тот же. Но в этом случае я даже не замахивался на перебор.

8 красных прямых на картинке образуют конфигурацию с вектором граней (14,1,3,3,0,0). Добавление 9-й (синей) прямой приводит к конфигурации (18,1,6,3,0,0,0). (Два треугольника не полностью попали на картинку)

Награды

За решение задачи ММ228 участники Марафона получают следующие призовые баллы: Олег Полубасов и Анатолий Казмерчук - по 6; Виктор Филимоненков и Валентина Колыбасова - по 4;

Эстетическая оценка задачи - 4.4 балла


ММ227

Конкурсная зхадача ММ227 (7 баллов)

Пусть n = {p_1}^{a_1}{p_2}^{a_2}...{p_s}^{a_s} - каноническое разложение n. Обозначим через sopf(n) число p_1+p_2+...p_s.
Назовем натуральное число k слабым, если уравнение x = k*sopf(x) неразрешимо в натуральных числах, и сильным в противном случае.
Доказать, что сильных чисел бесконечно много.
Найти наименьшее слабое число.
Доказать, что слабых чисел бесконечно много.

Решение задачи ММ227

Решение

Привожу решения Валентины Колыбасовой, Анатолия Казмерчука, Виктора Филимоненкова и Олега Полубасова.

Обсуждение

Я не обнаружил никаких следов ММ227 в OEIS. Планирую исправить это упущение. При этом интересны не сила или слабость тех или иных наборов простых множителей, сравнение силы сильных. Этот момент не нашел своего выражения в присланных решениях. Придется отдуваться ведущему.
Рассмотрим, например, наиболее простой класс сильных чисел - степени простых. Для каждого p уравнение x = k*sopf(x) разрешимо. При этом количество решений зависит только от p. Таким образом, возникает любопытное разбиение всех простых числел на классы:
К классу 1 относятся простые числа 2, 61, 97, 113, 151, 173…
К классу 2 - 3, 5, 17, 29, 41, 53, 73, 79…
К классу 3 - 7, 11, 13, 23, 37, 47, 89…
К классу 4 - 19, 31, 43, 67, 103, 131…
К классу 5 - 71, 179…
Естественно возникает вопрос о бесконечности классов для каждого натуральноо числа. Более тонок вопрос об асимтотической плотности классов.

Задача ММ227 понравилась участникам. Даже если исключить мнение марафонцев, оценивающих задачи по однобалльной шкале, оценка останется высокой :-) Такая ситуация весьма редка. Обычно, при достаточном количестве присланных решений палитра вкусовых предпочтений достаочно широка.

Разброс в призовых баллах тоже не слишком велик. Мне показалось недостаточно строгим обоснование слабости числа 46 Евгением Гужавиным. Это нашло отражение в оценке. Если Евгений докажет мне, что это я, а не он чего-то упустил готов пересмотреть его оценку.

Награды

За решение задачи ММ227 участники Марафона получают следующие призовые баллы:
Олег Полубасов - 9;
Анатолий Казмерчук - 8;
Владислав Франк, Владимир Дорофеев, Виктор Филимоненков, Валентина Колыбасова и Тимофей Игнатьев - по 7;
Евгений Гужавин - 6.

Эстетическая оценка задачи - 4.9 балла


ММ226

Конкурсная зхадача ММ226 (5 баллов)

Назовем натуральное число n счастливым, если оно является точной седьмой степенью, а седьмой (при упорядочении по возрастанию) натуральный делитель n равен количеству натуральных делителей n. А есть ли, вообще, счастье в жизни? В смысле, существуют ли счастливые числа?

Решение задачи ММ226


ММ225

Конкурсная задача ММ225 (6 баллов)

Найти все значения параметра a, при которых уравнение (2a+3)x2 + xa + 3a - 1 = 0 имеет два целых корня.

Решение задачи ММ225


ММ224

Конкурсная задача ММ224 (6 баллов)

В задаче, которую задали на дом Пете и Васе, требовалось найти площади треугольников, на которые разбивается исходный треугольник ABC трисектрисами, проведенными из вершины C. При сверке ответов у Пети и Васи совпали значения двух площадей: 2 и 4. Третья площадь у Пети оказалась равной 10, а у Васи - 20. Найти угол С, если известно, что один из учеников получил за домашнее задание пятерку.

Решение задачи ММ224


ММ223

Конкурсная задача ММ223 (6 баллов)

Рассмотрим две задачки.

1. Вася получил за четверть 5 оценок по географии. Ему удалось незаметно исправить в журнале первую из них с тройки на пятерку. Выставляя итоговую оценку, учительница находит среднюю оценку и округляет ее до целой. Какова вероятность, что Васина оценка за четверть повысится при условии, что учительница не выявит подлога, а все допустимые упорядоченные наборы оценок равновероятны?

2. Вася получил за четверть 5 оценок по географии. Ему удалось незаметно исправить в журнале первую попавшуюся из них с тройки на пятерку. Выставляя итоговую оценку, учительница находит среднюю оценку и округляет ее до целой. Какова вероятность, что Васина оценка за четверть повысится при условии, что учительница не выявит подлога, а все допустимые упорядоченные наборы оценок равновероятны?

Какое из условий выгоднее для жуликоватого Васи?

Примечание: Был ли журнал электронным – не важно. Но важно, что колы не ставим: разрешается использовать только оценки 2, 3, 4, 5

Решение задачи ММ223


ММ222

Конкурсная задача ММ222 (6 баллов)

На доске написано 10 попарно различных натуральных чисел. После того как 5 из этих чисел разделили на 5, а другие 5 умножили на 5 возникли 10 попарно различных натуральных чисел, отличных от исходных. При этом сумма новых чисел оказалась в 3 раза больше суммы исходных. Пусть n - наименьшее возможное значение наибольшего из исходных чисел, для которых возможна описанная ситуация. Сколько существует различных наборов исходных чисел с наибольшим числом n+1?

Решение задачи ММ222


ММ221

Конкурсная задача ММ221 (4 балла)

Сколько решений в натуральных числах имеет уравнение 3x4 + 2y3 = 37z ?

Решение задачи ММ221


ММ220

Конкурсная задача ММ220 (15 баллов)

Найти наименьшее v такое, что существует многогранник, имеющий v вершин и 2016 диагоналей, а многогранника, имеющего v+1 вершину и 2016 диагоналей, не существует.

Решение задачи ММ220


 

 


Страница: [[marathon:about]]

marathon/about.1509187640.txt · Последние изменения: 2017/10/28 13:47 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006