Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Архив Марафона

ММ219

Конкурсная задача ММ219 (8 баллов)

Какое наибольшее количество диагоналей может иметь одиннадцатигранник?

Решение задачи ММ219


ММ218

Конкурсная задача ММ218 (5 баллов)

Найти наименьшее возможное количество диагоналей многогранника, имеющего 2017 ребер.

Решение задачи ММ218


ММ217

Конкурсная задача ММ217 (6 баллов)

Диагонали AC1 и BD1 шестигранника ABCDA1B1C1D1, все грани которого четырехугольны, пересекаются в точке O. Могут ли остальные пары диагоналей скрещиваться?

Решение задачи ММ217


ММ216

Конкурсная задача ММ216 (10 баллов)

Назовем натуральное число n красивым, если наименьшее натуральное число, имеющее ровно n натуральных делителей, кратно n.
1. Доказать, что все праймориалы красивы.
2. Верно ли, что все факториалы красивы?
3. Сколько существует красивых чисел вида k7, где k - некоторое натуральное число?
4. Сколько существует красивых чисел вида 7k, где k - некоторое натуральное число?

Решение задачи ММ216


ММ215

Конкурсная задача ММ215 (4 балла)

На какое наименьшее количество тетраэдров можно разрезать шестиугольную призму?

Решение задачи ММ215


ММ214

Конкурсная задача ММ214 (4 балла)

1. Все грани многогранника - n-угольники. При каких n это возможно?
2. При каком наименьшем числе граней существует многогранник, все грани которого пятиугольны?

Решение задачи ММ214


ММ213

Конкурсная задача ММ213 (4 балла)

1. Пусть H = {h1, h_2,…, hf} , где f - количество граней, а hi - число сторон i -й грани. Какое наименьшее значение может принимать f-|H| ?
2. Пусть gi означает число i-угольных граней многогранника для каждого значения i . Могут ли все gi не превышать 2?

Решение задачи ММ213


ММ212

Конкурсная задача ММ212 (4 балла)

Доказать, что любой многогранник, имеющий 2016 вершин, может быть разрезан на 4030 тетраэдров.

Решение

Решение задачи ММ212


ММ211

Конкурсная задача ММ211 (3 балла)

Доказать, что при любом четном f > 4 существует многогранник, имеющий f граней, все грани которого четырехугольники.

Решение задачи ММ211


ММ210

Конкурсная задача ММ210 (13 баллов)

1. Пусть М = {ha, hb, hc, ba, bb, bc, ma, mb, mc} - множество, состоящее из величин высот, биссектрис, и медиан некоторого треугольника. Сколько элементов может быть в M?
2. Пусть в разностороннем треугольнике ABC (a < b < c) и множество М из п.1 содержит 9 элементов. Соответствующие числа расположили в порядке возрастания. Сколько различных упорядочиваний может при этом получится?
3. Тот же вопрос для случая, когда среди чисел {ha, hb, hc, ba, bb, bc, ma, mb, mc} могут быть одинаковые. (В этом случае полагаем a ≤ b ≤ c и рассматриваем строгое упорядочивание классов одинаковых величин. Перестановки внутри класса не важны.)

Примечание.
Получить ответ для каждого из случаев:
1) рассматриваются только невырожденные треугольники;
2) допускаются вырожденные треугольники (все вершины лежат на одной прямой).

Решение задачи 210


ММ209

Конкурсная задача ММ209 (9 баллов)

Эта задача прямое продолжение задач ММ29 и ММ39

Назовем натуральное число a третькубом, по основанию g, если дважды приписав в g-ичной системе a к себе получим полный куб. Доказать, что существует бесконечно много оснований g, для которых есть третькубы.

Решение задачи 209


ММ208

Конкурсная задача ММ208 (7 баллов)

От двух до пяти.

Найти наименьшее натуральное число, представимое в виде суммы пяти натуральных слагаемых не менее чем четырьмя способами, таким образом, что любые три слагаемых взаимно просты, а любые два не взаимно просты,.

Решение задачи 208


ММ207

Конкурсная задача ММ207 (13 баллов)

Задача ММ207 является прямым продолжением задач ММ77 и ММ206

Обозначим через A(a,d) максимально возможное количество последовательных натуральных чисел таких, что первое из имеет ровно a натуральных делителей, второе - a+d, третье - a+2d и т.д. (иными словами, количества делителей последовательных чисел образуют арифметическую прогрессию с первым членом a и разностью d).
1) найти наибольшее возможное значение A(n,1);
2) найти наибольшее возможное значение A(n,3);
3) найти A(2,2);
4) найти A(4,2);
5) доказать, что при подходящем n A(n,2) ≥ 8.

Решение задачи 207


ММ206

Конкурсная задача ММ206 (11 баллов)

Задача ММ206 является прямым продолжением задачи ММ77

Каждое из n натуральных чисел, идущих подряд, имеет ровно k натуральных делителей. Какое наибольшее значение может принимать n, если
1) k = 18;
2) k = 20;
3) k = 22;
4) k = 202.

Замечание: Относительно скромное количество призовых баллов за эту задачу обусловлено тем, что при ее решении можно воспользоваться не только решением ММ77, но и результатами статьи, на которую есть ссылка в обсуждении.

Решение задачи 206


ММ205

Конкурсная задача ММ205 (7 баллов)

Вася выписывает в порядке возрастания натуральные числа, имеющие по 2016 натуральных делителей. На каком шаге он впервые выпишет число, не кратное 2016?

Решение задачи 205


ММ204

Конкурсная задача ММ204 (5 баллов)

Найти натуральное число, которое в трех различных системах счисления записывается 102, 201 и 20001 соответственно.

Решение задачи 204


ММ203

Конкурсная задача ММ203 (5 баллов)

Единичный квадрат разрезали на 5 равновеликих фигур отрезками, параллельными диагоналям. Найти наименьшую возможную суммарную длину этих отрезков.

Решение задачи 203


ММ202

Конкурсная задача ММ202 (5 баллов)

При каких значениях параметра a разрешимо уравнение x2 - a = [x]{x}?

Решение задачи 202


ММ201

Конкурсная задача ММ201 (3 балла)

Для каждого натурального k найти все возможные n, при которых множество {1, 2, …, n} можно разбить на классы так, что наибольший элемент в каждом классе ровно в k раз больше количества элементов класса.

Решение задачи 201




 

 


Страница: [[marathon:archive]]

marathon/archive.1504245018.txt · Последние изменения: 2017/09/01 08:50 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006