Ответ: $a \ge 0$, $a \ne n^2 + n + 1$, где $n \in N$.

По определению дробная часть числа $\{x\} = x - \lfloor x \rfloor$. Заменим x в исходном уравнении:

$$(\lfloor x \rfloor + \{x\})^2 - a = \lfloor x \rfloor \{x\}$$

$$a = [x]^2 + [x]{x} + [x]^2$$

Исследуем функцию $f(y) = n^2 + ny + y^2$ на полуинтервале [n; n+1), где $n = \lfloor x \rfloor$, $y = \{x\}$, $0 \le y < 1$.

1. При $n \ge 0$ функция f(y) возрастающая, следовательно $n^2 \le f(y) < n^2 + n + 1$.

2. При n = -1 функция f(y) = 1- y + y^2 имеет точку минимума y = $\frac{1}{2}$, следовательно

$$f(\frac{1}{2}) = \frac{3}{4} \le f(y) \le f(0) = 1.$$

3. При n < -1 функция f(y) убывающая, следовательно $n^2 - n + 1 < f(y) \le n^2$, а после замены n на n + 1, $n^2 + n + 1 < f(y) \le (n + 1)^2$.

В итоге видно что:

1. $a \ge 0$, $a \ne n^2 + n + 1$.

2. Уравнение может иметь одно (наиболее общий случай), два (a — квадрат целого числа или $a = \frac{3}{4}$) и даже три решения (при $\frac{3}{4} < a < 1$).

Существует и другое определение дробной части числа (см., например,

http://mathworld.wolfram.com/FractionalPart.html): $\{x\} = \begin{cases} x - \lfloor x \rfloor, x \ge 0 \\ x - \lceil x \rceil, x < 0 \end{cases}$

1. Случай для x ≥ 0 рассмотрен выше.

2. Для x < 0 исходное уравнение после замены x:

$$([x] + \{x\})^2 - a = [x]\{x\}$$

$$a = [x]^2 + (2[x] - [x])[x] + [x]^2$$

Если x = n — целое число, $\{x\} = 0$ и уравнение вырождается в $a = n^2$.

Иначе [x] = [x] - 1 и уравнение принимает вид $a = [x]^2 + ([x] + 1)\{x\} + [x]^2$.

Рассмотрим функцию $f(y) = n^2 + (n+1)y + y^2$, где $n = \lceil x \rceil \le 0$, $y = \{x\}$, $-1 < y \le 0$.

2a. При n = 0 функция $f(y) = y + y^2$ имеет точку минимума $y = -\frac{1}{2}$, следовательно

$$f(-\frac{1}{2}) = -\frac{1}{4} \le f(y) \le f(0) = 0$$
.

26. При n < 0 функция f(y) убывающая, следовательно n^2 - $n < f(y) \le n^2$, а после замены n на n+1, $n^2+n < f(y) \le (n+1)^2$.

В итоге имеем: $a \ge -\frac{1}{4}$, но также $n^2 + n < a < n^2 + n + 1$, где $n \in N$.