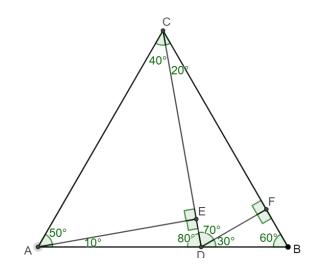
ММ 265 (5 баллов)

Ответ: 4.

Найдены возможные количества прямоугольных треугольников, попарно неподобных между собой, возникающие при разбиении произвольного треугольника.

Решение:

На рисунке показан способ разрезания правильного треугольника на 4 прямоугольных треугольников с наименьшими острыми углами 10,20,30,40 градусов.



Предположим, треугольник разрезан на n=2 или n=3 неподобных между собой прямоугольных треугольников. Те вершины A_k образованных треугольников, которые не совпадают с вершинами исходного треугольника, лежат либо внутри (i) либо на сторонах (ii) исходного треугольника.

і) В этом случае сумма углов треугольников с вершиной в точке A_k равна 180 или 360 градусов.

іі) В этом случае сумма углов треугольников с вершиной в точке A_k равна 180 градусов.

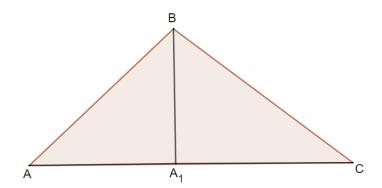
Так как сумма всех углов образованных треугольников равна 180n градусов, то получается, что всего точек A_k может быть не больше двух.

Следующие рассмотрения мы проведем для произвольного исходного треугольника.

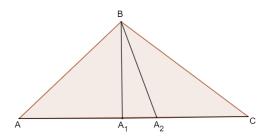
1) Единственная точка A_1 лежит внутри треугольника. Поскольку сумма трех углов с вершиной в точке A_1 равна 360 градусов, то по крайней мере один из этих углов не меньше 120 градусов, и, следовательно, тупой. А нас интересуют разбиения именно на прямоугольные треугольники. Этот случай не возможен.



2)Единственная точка A_1 лежит на стороне треугольника, например, на стороне AC. А поскольку сумма двух углов с вершиной в точке A_1 равен 180 градусов, и каждый из них не больше, чем по 90 градусов, то оба угла прямые. Понятно, что углы $\angle A$, $\angle C$ острые. И тогда образованные прямоугольные треугольники не подобны, только если $\angle A \neq \angle C$ и $\angle A + \angle C \neq 90^{\circ}$. Тогда треугольник ABC не является прямоугольным и, кроме того, $AB \neq BC$.

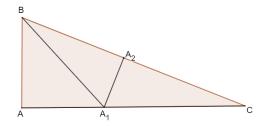


3)Две точки A_1 , A_2 лежат на одной стороне. По крайней мере, один из отрезков BA_1 , BA_2 является наклонной, и тогда один из углов со стороной, являющейся этой наклонной, - тупой. Этот случай не возможен.



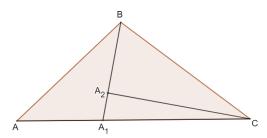
4) Две точки A_1 , A_2 лежат на разных сторонах, например, на AC и BC соответственно. Понятно, что при разбиении на треугольники эти точки получаются соединенными отрезком. Тогда возможны три случая. В первом случае угол ABA_1 прямой. Тогда угол ABC тупой, $\angle A \neq \angle C$. И так как $\angle C \neq \angle A_1BC$, то $\angle A + 2\angle C \neq 90$. И так как $\angle A \neq \angle A_1BC$, то $2\angle A + \angle C \neq 90$. Получается, что должно выполнятся условие $\angle B - 90 \neq \angle A$, $\angle C$

Во втором случае угол AA_1B прямой. Тогда прямоугольные треугольники A_1BA_2 , $A_1\mathsf{C}A_2$ подобны. Этот случай невозможен.



Во третьем случае угол BAA_1 прямой. Малым шевелением точки A_1 можно добиться, чтобы полученные три прямоугольных треугольника были попарно не подобны между собой.

5)Одна точка внутри треугольника, а другая на стороне, например, AC. Тогда получается следующая конфигурация, при которой угол CA_2A_1 прямой, тогда угол CA_1A_2 острый, а угол BA_1A тупой. Эта конфигурация не возможна.



Таким образом, возможны только конфигурации в случаях 2), 4.1), 4.3).

Заметим, что эти конфигурации для правильного треугольника не возможны. Действительно,

в случае 2) оба треугольника BA_1A , BA_1C оказываются равными;

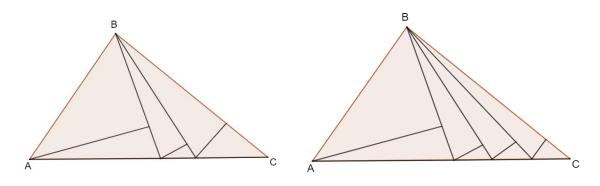
в случае 4.1) исходный треугольник должен быть тупоугольным, понятно, что правильный треугольник таковым не является;

в случае 4.3) исходный треугольник должен быть прямоугольным, понятно, что правильный треугольник таковым не является.

Мы доказали, что **невозможно правильный треугольник разбить на два** или на три прямоугольных треугольников, попарно не подобных между собой.

Изучим вопрос о количестве n попарно неподобных треугольников, возникающих при разбиении произвольного треугольника.

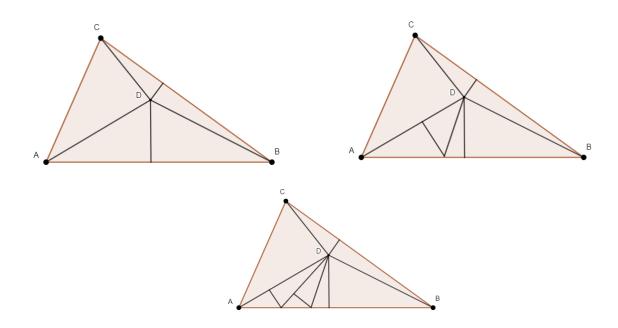
Пусть углы при вершинах A, C острые. Тогда такая процедура позволяет



получить разбиения на 2s прямоугольных треугольников при каждом $s \ge 2$.

А малым шевелением точек на сторонах можно добиться того, чтобы полученные прямоугольные треугольники не были подобны.

Пусть угол при вершине B острый. Выбираем точку D внутри треугольника такую, чтобы угол ADC был прямым. Тогда следующая процедура построения позволяет получить разбиения на 2s+1 прямоугольных треугольников при каждом $s \geq 2$. А малым шевелением точки D и точек на отрезках AB, AD можно добиться того, чтобы полученные прямоугольные треугольники не были подобны.



Понятно, что в любом треугольнике можно найти два острых угла. Поэтому при любом $n \ge 4$ произвольный треугольник можно разбить на n прямоугольных треугольников, попарно не подобных между собой.

Пусть n=2. Проведенный анализ в п.2) дает возможность разбить треугольник на два прямоугольных не подобных треугольника только в случае, если исходный треугольник не является правильным, прямоугольным или равнобедренным тупоугольным.

Пусть n = 3.

Проведенный анализ в п. 4.3) дает возможность разбить произвольный прямоугольный треугольник на три прямоугольных попарно неподобных треугольников.

Если в п. 4.1) угол ABC тупой, $\angle A \neq \angle C$, и $\angle B - 90 \neq \angle A$, $\angle C$, тогда удасться разбить такой тупоугольный неравнобедренный треугольник на три прямоугольных попарно неподобных треугольников.

Суммируем:

для правильного треугольника и равнобедренного тупоугольного треугольника $n \geq 4$,

для прямоугольного треугольника $n \geq 3$,

для неравнобедренного тупоугольного треугольника, для которого не найдется двух углов, отличающихся на 90 градусов $n \geq 2$,

для остроугольного не правильного треугольника и для неравнобедренного тупоугольного треугольника с двумя углами, отличающимися на 90 градусов $n=2, n\geq 4$