Конкурсная задача ММ269 (11 баллов)
Какова максимальная возможная степень вершины выпуклого многогранника
a) класса 3;
b) класса 4?
Решение
Привожу решения Олега Полубасова, Анатолия Казмерчука и Константина Шамсутдинова.
Обсуждение
Согласно традициям Марафона последние задачи каждого конкурса имеют повышенную сложность. Эта традиция сохранилась и в данном конкурсе.
Результатом этого усложнения чаще всего был отток значительной части конкурсантов. А эта традиция неожиданно была нарушена! Из тех, кто регулярно участвовал в нынешнем конкурсе, не прислали решения ММ269 всего два человека. А остальные порадовали, но не пощадили ведущего Впрочем, после моей мольбы, все же сжалились, сократив самое длинное из решений на 40(!) страниц.
Разумеется, основные страсти кипели вокруг обобщения задачи, очевидного по постановке вопроса. Но только по постановке. Да-да, ответ 3m-3 не годится!
В какой-то момент у меня имелось три решения, в которых приводилась и обосновывалась точная формула для максимальной возможной степени вершины m-многогранника. Точнее, три разных формулы, дающих разные ответы
Понимая, что ситуация, когда «Вася и Петя оба правы», маловероятна, ведущий был вынужден углубиться в многостраничные трактаты, воспользовавшись удачно подвернувшейся просьбой продлить срок приема решений. Дополнительное время не пропало даром. И ведущий и конкурсанты обнаружили некоторые ошибки и неточности в решениях. Во всех, кроме одного, в котором ошибок найти не удалось (или, все же, пока не удалось?). Желающие могут попробовать определить это решение из приводимого ниже списка начисленных призовых баллов (а также попытаться найти ошибки и в этом решении).
Награды
За решение задачи ММ269 участники Марафона получают следующие призовые баллы:
Олег Полубасов - 18;
Мераб Левиашвили - 16;
Анатолий Казмерчук - 13;
Константин Шамсутдинов - 13;
Василий Дзюбенко - 11;
Александр Романов - 11;
Виктор Филимоненков - 11;
Денис Овчинников - 7.
Эстетическая оценка задачи - 4.7 балла