|
||||||||||||||||||
|
Содержание174Конкурсная задача ММ174 (А-4) (7 баллов)
Найти наименьшее натуральное число, произведение всех натуральных делителей которого заканчивается
а) ровно 2013 нулями;
Примечание: Решение Приведу здесь лишь набросок решения. С более подробным вариантом можно ознакомиться здесь
Ясно, что в каноническом разложении искомых чисел должны присутствовать множители 2 и 5. Причем показатель степени у пятерки не больше, чем у двойки (иначе их можно было бы поменять местами и уменьшить число).
Потому искомые числа имеют вид a = 5sn, где n кратно 2s. Произведение всех делителей числа a будет заканчиваться τ(n)s(s+1)/2 нулями. Обсуждение Сергей Половинкин нашел в Интернете задачу (предлагаемую в качестве образца задачи С6 ЕГЭ), где требовалось найти намиеньше натуральное число, произведение делителей которого заканчивается на 399 нулей. Каюсь, одиннадцатиклассники, у которых я веду факультатив, приносили мне эту задачу (только не уверен, что там именно 399 нулей было). И именно она легла в основу ММ174. Единственное существенное изменение - добавление пункта б), на мой взгляд, гораздо более содержательного, чем а). В частности, у меня ушло на второй пункт раз в 10 больше времени, чем на первый. Поясню, как я оценивал решения. Одного балла недосчитались те участники, которые (хотя и упомянули, что решали пункт б) перебором) не привели ограничений, делающих перебор конечным. Если же такие ограничения (пусть и не оптимальные) в решении были приведены, я ставил оценку 7 баллов. Но только при условии, что ответ верен Сергей Половинкин (неожиданно для меня) нашел в условии скрытый намек на исследование задачи для других систем счисления. И прислал мне набросок такого обобщения. Мне думается, что такое обобщение не вызывает особого интереса (в отличие, например, от ММ175). Поэтому дополнительных призовых баллов не было. Что-то в текущем туре я стал жаден на дополнительные баллы. Но обещаю исправиться. Награды За решение задачи ММ174 Виктор Филимоненков, Алексей Извалов, Анатолий Казмерчук и Алексей Волошин получают по 7 призовых баллов. Сергей Половинкин и Олег Полубасов получают по 6 призовых баллов. Евгений Гужавин - 5 призовых баллов, а Николай Дерюгин - 4 призовых балла. Эстетическая оценка задачи - 4.4 балла
|
|||||||||||||||||
|
||||||||||||||||||
|