Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Различия

Здесь показаны различия между двумя версиями данной страницы.

Ссылка на это сравнение

marathon:problem_270 [2022/04/04 14:11] (текущий)
letsko создано
Строка 1: Строка 1:
 +===== ММ270 =====
 +**Конкурсная задача ММ270** (16 баллов)
 +
 +Найти наибольшее возможное количество граней многогранника класса m.
 +
 +**Решение**
 +
 +Привожу решения призеров конкурса,​ {{:​marathon:​mm_270_polubasoff.pdf|Олега Полубасова}} и {{:​marathon:​kazmerchuk_mm_270.pdf|Анатолия Казмерчука}},​ а также обобщение задачи победителя конкурса {{:​marathon:​обобщение-мм270.docx|Мераба Левиашвили}} .
 +
 +**Обсуждение**
 +
 +В отличие от ММ269, где вопрос задачи был сформулирован для частных значений m, а обобщали его сами конкурсанты,​ в ММ270 сразу же был сформулирован общий вопрос. Объясняется это просто. В ММ269 ответа на общий вопрос ведущий на момент опубликования задачи не знал (и даже склонялся,​ но, к счастью не "​доказал"​ неверный ответ). А для ММ270 у меня был верный обоснованный ответ.
 +
 +Эта ситуация выбила почву из под ног большинства любителей обобщений. Да, практически все, решившие ММ270, нашли заодно и наибольшие количества вершин и ребер m-многогранников. Но ответы на эти вопросы становятся очевидны при успешном решении основной задачи. Единственным,​ кто изыскал возможности пообобщать стал Мераб Левиашвили. Он перешел от рассмотрения многогранников к рассмотрению простых (каждая вершина имеет степень n) политопов размерностей,​ больших 3. У таких политопов существуют грани разных размерностей. Соответственно можно рассматривать разные аналоги m-многогранников. Мераб остановился на случае двумерных граней. На основании известных соотношений Дена-Соммервиля он получил наименьшие значения m, для которых существуют n-мерные политопы класса m и верхние оценки для числа граней таких политопов для n \in {4, 5}, а также некоторые оценки для n \in {6, 7, 8}. Я привожу только обобщение задачи (присланное Мерабом отдельным документом),​ в том числе, и по причине слишком большого веса основного решения.
 +
 +Во всех присланных решениях имеется содержится ответ 7m-4 для больших значений m. Разнятся эти решения степенью гипотетичности и обоснованности данного ответа,​ а также количеством частных значений m, подтверждающих данную гипотезу (это касается решений,​ где 7m-4 именно гипотеза).
 +
 +
 +**Награды**
 +
 +За решение задачи ММ270 участники Марафона получают следующие призовые баллы:​\\
 +Мераб Левиашвили - 18;\\
 +Олег Полубасов - 16;\\
 +Анатолий Казмерчук - 16;\\
 +Александр Романов - 16;\\
 +Константин Шамсутдинов - 10;\\
 +Виктор Филимоненков - 10;\\
 +Денис Овчинников - 8.\\
 +
 +**Эстетическая оценка задачи - 4.8 балла**
 +----
  
 

 


Страница: [[marathon:problem_270]]

marathon/problem_270.txt · Последние изменения: 2022/04/04 14:11 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006