Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Различия

Здесь показаны различия между двумя версиями данной страницы.

Ссылка на это сравнение

marathon:problem_210 [2015/12/18 10:25]
letsko
marathon:problem_210 [2017/11/19 17:05] (текущий)
letsko
Строка 11: Строка 11:
 1) рассматриваются только невырожденные треугольники;​\\ 1) рассматриваются только невырожденные треугольники;​\\
 2) допускаются вырожденные треугольники (все вершины лежат на одной прямой). 2) допускаются вырожденные треугольники (все вершины лежат на одной прямой).
- 
-[[problem_210|Решение задачи 210]] 
  
 **Решение** ​ **Решение** ​
  
 Количество решений,​ присланных после продления срока их приема,​ оказалось меньше количества просьб об этом продлении. Количество решений,​ присланных после продления срока их приема,​ оказалось меньше количества просьб об этом продлении.
-Поэтому привожу все решения,​ которые у меня есть: {{:​marathon:​mm210_полубасов.pdf|Олега Полубасова}},​ {{:​marathon:​kazmerchuk_pr_210.docx|Анатолия Казмерчука}} и {{:​marathon:​mm210.docx|авторское}}.+Поэтому привожу все решения,​ которые у меня есть: {{:​marathon:​mm210_полубасов.pdf|Олега Полубасова}},​ {{:​marathon:​kazmerchuk_pr_210.docx|Анатолия Казмерчука}} и {{:​marathon:​triangles_report.pdf|авторское}}.
  
 **Обсуждение** **Обсуждение**
Строка 27: Строка 25:
 Понятно,​ что рассматриваемые вопросы зависят только от формы, но не от размеров треугольника. Поэтому задача является двухпараметрической. Но сами параметры можно выбирать по-разному. Подход,​ который еще со времен задачи ММ80 предпочитаю я, нравится мне своей наглядностью - на рисунке представлены сами изучаемые треугольники,​ а не их характеристики. Удивительно,​ что я ни разу не встречал такой параметризации в литературе ​ (она встречалась в решении задачи ММ80, присланном Виктором Филимоненковым,​ но в этом туре Виктор сошел с дистанции посреди этапа :( ).  Понятно,​ что рассматриваемые вопросы зависят только от формы, но не от размеров треугольника. Поэтому задача является двухпараметрической. Но сами параметры можно выбирать по-разному. Подход,​ который еще со времен задачи ММ80 предпочитаю я, нравится мне своей наглядностью - на рисунке представлены сами изучаемые треугольники,​ а не их характеристики. Удивительно,​ что я ни разу не встречал такой параметризации в литературе ​ (она встречалась в решении задачи ММ80, присланном Виктором Филимоненковым,​ но в этом туре Виктор сошел с дистанции посреди этапа :( ). 
  
-Любопытно,​ что среди тупоугольных треугольников представлены целых ​53 из 56 возможных классов невырожденных треугольников. Если допустить к рассмотрению вырожденные треугольники,​ то среди тупоугольных будут представлены ​59 классов. Отпадет еще описанный выше класс "​треугольников"​ с двумя совпадающими вершинами (у таких "​треугольников",​ на мой взгляд,​ один острый угол и пара прямых,​ но я не настаиваю на таком толковании :​-)).\\ ​+Любопытно,​ что среди тупоугольных треугольников представлены целых ​51 из 56 возможных классов невырожденных треугольников. Если допустить к рассмотрению вырожденные треугольники,​ то среди тупоугольных будут представлены ​57 классов. Отпадет еще описанный выше класс "​треугольников"​ с двумя совпадающими вершинами (у таких "​треугольников",​ на мой взгляд,​ один острый угол и пара прямых,​ но я не настаиваю на таком толковании :​-)).\\ ​
 Среди остроугольных треугольников представлены всего 20 классов из 56 (8 при |M|=9, 8 при |M|=8, 1 при |M|=7, 2 при |M|=4, 1 при |M|=1).\\ ​ Среди остроугольных треугольников представлены всего 20 классов из 56 (8 при |M|=9, 8 при |M|=8, 1 при |M|=7, 2 при |M|=4, 1 при |M|=1).\\ ​
 14 классов из 56 представлены среди прямоугольных треугольников. 14 классов из 56 представлены среди прямоугольных треугольников.
 

 


Страница: [[marathon:problem_210]]

marathon/problem_210.1450423554.txt · Последние изменения: 2015/12/18 10:25 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006