Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Содержание

ММ229

Конкурсная задача ММ229 (7 баллов)

Петя нарисовал на доске несколько прямых общего положения так, что все попарные точки пересечения прямых попали на чертеж.
Вася выписал себе в тетрадь внешний цикл возникшей конфигурации: (1, 4, 3, 1, 4, 1, 2, 2, 3, 2, 3, 1, 2, 3, 1, 2, 4, 2, 1, 3).
После этого Петя стер рисунок. Сможет ли Вася восстановить:
1) количество прямых;
2) количество элементарных многоугольников:
3) количество выпуклых вершин;
4) количество элементарных отрезков, ограничивающих внешний контур;
5) количество сторон выпуклой оболочки внешнего контура;
6) суммарное число сторон элементарных многоугольников;
7) количество обратных вершин;
8) количество впадин;
9) количество сторон внешнего контура?

Примечание: Вася – умный.

Решение

Привожу все поступившие решения: Ариадны, Анатолия Казмерчука, Виктора Филимоненкова и Олега Полубасова.

Обсуждение

На перегоне ММ228-ММ229 никто из марафонцев с дистанции никто не сошел. Но, к сожалению, никто и не вернулся (примкнул).

Я не слишком высоко оценил титаническую работу Анатолия Казмерчука по подсчету количества конфигураций, приводящих к данному внешнему циклу, поскольку результат получился слишком уж частный. Гораздо интереснее, на мой взгляд, получить какие-то общие закономерности.
Или хотя бы полное описание всех конфигураций (с позиций рассматриваемых конфигураций) для малого количества прямых.
До 4-х прямых включительно все однозначно.
При 5-и прямых все характеристики дружно перестают быть константами, но возможные значения легко перебираются.
Например, возможные векторы граней - [5,0,1], [4,1,1], [3,2,1], [3,3,0].
Разнообразие внешних циклов несколько больше:
(3,1,3,1,3,1,3,1,3,1);
(3,2,1,2,3,1,2,2,2,1);
(4,1,2,2,2,1,2,2,2,1);
(3,1,2,2,2,1,2,2,2,1);
(3,1,3,1,3,1,2,2,2,1);
(3,2,1,3,2,1,2,2,2,1).
В частности, для пяти прямых внешний цикл однозначно определяет вектор граней, что, как мы знаем, неверно в общем случае. Начиная с 6-и прямых, разнообразие характеристик и их сочетаний уже настолько велико, что ручной перебор проблематичен.
Ну а в общем случае…
В общем случае удается получить лишь некоторые оценки. Такие как наличие n-2 треугольников и достижимость (n-2)(n-3)/2 четырехугольников для конфигураций из $n$ прямых.

Награды

За решение задачи ММ229 участники Марафона получают следующие призовые баллы: Анатолий Казмерчук - 9; Олег Полубасов - 8; Виктор Филимоненков - 7; Валентина Колыбасова - 6.

Эстетическая оценка задачи - 4.8 балла


 

 


Страница: [[marathon:problem_229]]

marathon/problem_229.txt · Последние изменения: 2017/12/09 16:11 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006