Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Содержание

ММ269

Конкурсная задача ММ269 (11 баллов)

Какова максимальная возможная степень вершины выпуклого многогранника
a) класса 3;
b) класса 4?

Решение

Привожу решения Олега Полубасова, Анатолия Казмерчука и Константина Шамсутдинова.

Обсуждение

Согласно традициям Марафона последние задачи каждого конкурса имеют повышенную сложность. Эта традиция сохранилась и в данном конкурсе. Результатом этого усложнения чаще всего был отток значительной части конкурсантов. А эта традиция неожиданно была нарушена! Из тех, кто регулярно участвовал в нынешнем конкурсе, не прислали решения ММ269 всего два человека. А остальные порадовали, но не пощадили ведущего :-) Впрочем, после моей мольбы, все же сжалились, сократив самое длинное из решений на 40(!) страниц.

Разумеется, основные страсти кипели вокруг обобщения задачи, очевидного по постановке вопроса. Но только по постановке. Да-да, ответ 3m-3 не годится! В какой-то момент у меня имелось три решения, в которых приводилась и обосновывалась точная формула для максимальной возможной степени вершины m-многогранника. Точнее, три разных формулы, дающих разные ответы :-)
Понимая, что ситуация, когда «Вася и Петя оба правы», маловероятна, ведущий был вынужден углубиться в многостраничные трактаты, воспользовавшись удачно подвернувшейся просьбой продлить срок приема решений. Дополнительное время не пропало даром. И ведущий и конкурсанты обнаружили некоторые ошибки и неточности в решениях. Во всех, кроме одного, в котором ошибок найти не удалось (или, все же, пока не удалось?). Желающие могут попробовать определить это решение из приводимого ниже списка начисленных призовых баллов (а также попытаться найти ошибки и в этом решении).

Награды

За решение задачи ММ269 участники Марафона получают следующие призовые баллы:
Олег Полубасов - 18;
Мераб Левиашвили - 16;
Анатолий Казмерчук - 13;
Константин Шамсутдинов - 13;
Василий Дзюбенко - 11;
Александр Романов - 11;
Виктор Филимоненков - 11;
Денис Овчинников - 7.

Эстетическая оценка задачи - 4.7 балла


 

 


Страница: [[marathon:problem_269]]

marathon/problem_269.txt · Последние изменения: 2024/12/24 08:30 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006