Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Содержание

ММ203

Конкурсная задача ММ203 (5 баллов)

Единичный квадрат разрезали на 5 равновеликих фигур отрезками, параллельными диагоналям. Найти наименьшую возможную суммарную длину этих отрезков.

Решение

Привожу решения Олега Полубасова, Анатолия Казмерчука и Сергея Половинкина.

Обсуждение

В отличие от первых двух задач, ММ203 оказалась трудным орешком. И для участников, и для ведущего. Предлагая эту задачу, я располагал обоснованием оптимальности известного мне решения (точнее, бесконечного числа решений с одинаковым ответом), основные идеи и степень строгости которого примерно совпадают с аналогами, изложенными в решениях Анатолия Казмерчука и Олега Полубасова. Как и Анатолий (но не Олег), я полагал такая строгость не оставляет сомнений в правильности ответа, но не является логически безупречной.

Возникает вопрос, зачем же тогда я оценил всего 5-ю баллами сложность задачи, которую я сам не смог решить. Ответ прост. Как и в ряде предыдущих задач, я заранее предполагал оценивать в 5 баллов решения подобные авторскому, а более строгие или даже более оптимальные решения (в существование коих я ни секунды верил) поощрять дополнительными призовыми баллами. Точно так же я не раз поступал при назначении цены предыдущих задач Марафона. Правда, обычно я заранее сообщал о подобных тонкостях в примечаниях к условии. А на этот раз не стал, дабы не отпугнуть наиболее робких участников :-)

И, как водится, заложив в условие вышеописанную мину замедленного действия, я сам же на ней и подорвался. Казалось бы, какие проблемы? На ММ203 поступило всего 7 решений (еще одно свидетельство трудности задачи). В каждой из семи есть правильный ответ. Но… Как оценивать решения в которых:
ничего не говорится об оптимальности приводимого разреза (разрезов);
утверждается, что автор уверен в оптимальности решения, но не знает, как это обосновать;
утверждается, что автор полагает, что есть более оптимальный разрез, который найти не удалось;
приводится обоснование оптимальности, которое, на мой взгляд, не является строгим;
приводится обоснование оптимальности, которое, на мой взгляд, не является обоснованием…
?
А если добавить, что некоторые участники ограничились одним вариантом оптимального разреза, другие привели несколько, третьи указали, что подходящих разрезов бесконечно много…
В общем я, привычно затруднялся, распределяя призовые баллы. И, после долгих мучений, занялся почти уравниловкой.

Особо отмечу слова, выделенные в предыдущих причитаниях жирным шрифтом. Высокая квалификация участников, утверждающих, что оптимальность решения обоснована, не вызывает сомнений. Поэтому я не исключаю, что именно я чего-то недоглядел и недооценил. Если это так… Что ж, эта тема недаром называется «Обсуждение и разбор марафонских задач», а не только разбор. Буду рад пересмотреть свои оценки, если на то будет достаточное основание.

На этот раз участники почти не пытались обобщать задачу. Хотя рассмотрение ситуации, в которой квадрат режется на другое частей, казалось бы, напрашивается. Однако единственным, кто задался этим вопросом, был Олег Полубасов. Но и у него не все получилось. По крайней мере, предложенные Олегом разрезы на 9 и 10 равновеликих частей не оптимальны:

Суммарная длина отрезков разбиения равна 2√2+3(1+√3)/2 ≈ 4.65, т.е. меньше чем у Олега.

А здесь суммарная длина отрезков разбиения равна 3√2+√2/√5) ≈ 4.875, т.е. вновь меньше чем у Олега.

У меня, было, возникла гипотеза, что при разрезании квадрата на 3k-2 частей наименьшая суммарная длина разреза будет равна k√2. Однако, она рухнула уже при k=4:

Легко убедиться, что суммарная длина разреза меньше 4√2 ровно на длину двух синих отрезков.

Награды

ЗЗа решение задачи ММ203 начислены следующие баллы: Олег Полубасов - 6 призовых баллов, Анатолий Казмерчук - 5 призовых баллов; Сергей Половинкин, Евгений Гужавин, Виктор Филимоненков, Валентина Колыбасова (Ариадна) и Алексей Извалов - по 4 призовых балла.

Эстетическая оценка задачи - 5 баллов


 

 


Страница: [[marathon:problem_203]]

marathon/problem_203.txt · Последние изменения: 2015/09/27 19:22 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006