![]() |
![]() |
|
||||||||||||||||
![]() ![]() ![]() |
||||||||||||||||||
|
СодержаниеММ187Можно обойтись без эллиптических кривых Конкурсная задача ММ187 (6 баллов)
Доказать, что существует бесконечно много пар натуральных чисел Решение Нарушу традиции и приведу решения Виктора Филимоненкова и Дмитрия Пашуткина (поразившее меня своей краткостью). Обсуждение Любопытна история ММ187. Лет двадцать назад задачу, послужившую основой ММ187, мне задал один абитуриент, когда принимал у него вступительный экзамен по математике. Случай в моей практике уникальный. Как выяснилось, исходная задача (IMO 1988) «широко известна в узких кругах». Например, метод Vieta jumping объясняется в англоязычной Википедии именно на примере этой задачи, а в русскоязычной Википедии ссылка на эту статью есть в статье «Олимпиадные математические задачи». Более того, статью «Vieta jumping» и ссылку на нее разместил Макс Алексеев - свой человек в Математическом марафоне. Так что, насчет узких кругов я написал не для красного словца.
Натуральными числами вида
На этот раз марафонцы не особо стремились к обобщениям. Единственным участником, предложившим серьезное обобщение ММ187, оказался Олег Полубасов. Я не привожу этого обобщения по двум причинам:
1) я еще сам не конца разобрался во всех деталях (а разбор ММ187 и без того запаздывает);
2) те детали, в которых я успел разобраться, все равно, попридержу, поскольку они могут послужить основой для новых задач Награды За правильное решение и обобщение задачи ММ187 Олег Полубасов получает 11 призовых баллов. За правильное решение задачи (или ее отдельных пунктов) Анатолий Казмерчук, Сергей Половинкин, Виктор Филимоненков, Дмитрий Пашуткин получают по 6 баллов, Евгений Гужавин - 4 балла, Николай Дерюгин и Владимир Дорофеев - по 2 призовых балла. Эстетическая оценка задачи 4.8 балла
|
|||||||||||||||||
|
||||||||||||||||||
|