Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Математический марафон


Стартовал 24-й конкурс в рамках Математического марафона

Вслед за 23-м 24-й конкурс не посвящен какой-то единой тематике. Наоборот, я стремился сделать задачи максимально разнообразными. Ну или почти максимально разнообразными: любимая комбинаторная геометрия представлена таки несколькими задачами. Впрочем, и в рамках этой тематики тоже наблюдается разнообразие.

Стать участником марафона может любой желающий. Некоторые задачи вполне доступны школьникам. Для решения других требуются знания, выходящие за рамки школьного курса. Одни задачи могут показаться вам интересными, а другие - не очень. На вкус и на цвет…

Но если любите поломать голову над нестандартными задачами, участвуйте, не стесняйтесь.

Жду от вас комментариев марафонских задач, а также пожеланий Марафону. Эта обратная связь позволит сделать Марафон интереснее для вас.

Не забывайте, пожалуйста, присылать вместе с Вашими решениями свои эстетические оценки задач по пятибалльной шкале.


Ведущий Марафона — Vladimir letsko

Текущие задачи


ММ236

Конкурсная задача ММ236 (7 баллов)

Решения принимаются до 13.10.2018

Натуральные числа от 1 до 4n разбили на 4 группы по n чисел в каждой. Оказалось, что произведение всех чисел из первой группы равно произведениям всех чисел из второй и третьей групп.
Найти наименьшую возможную сумму чисел четвертой группы.


ММ237

Конкурсная задача ММ237 (7 баллов)

Решения принимаются до 20.10.2018

Студент математического факультета Вася Пупкин написал на доске некоторую перестановку A из S10 в виде произведения независимых циклов (запись каждого цикла начинается с наименьшего элемента; опускались ли в записи циклы длины 1 - неизвестно). Васины однокурсники прокомментировали эту запись.

Аня: A6 – тождественная перестановка.
Ваня: Длины всех циклов A – числа Фибоначчи.
Даня: В S10 существует ровно 3 перестановки, квадрат которых равен A.
Маня: Хм, уравнение X2 =B не может иметь в S10 ровно 3 решения ни при каком B.
Саня: Более того, количество решений уравнения X2 =B в S10 не может быть нечетным ни при каком B.
Таня: Квадрат наибольшего элемента в самом длинном цикле меньше порядка A.
Зина: A5 имеет столько же циклов, сколько и A.
Лина: Внутри всех циклов элементы строго возрастают.
Нина: Произведение всех элементов одного из циклов кратно произведению всех элементов более длинного цикла и сумме всех элементов более короткого.
Фаина: Зина, Лина и Нина правы.

Вася (умница и отличник) заметил, что количество верных утверждений его однокурсников равно наибольшей длине цикла в A.
Найдите A.


ММ238

Конкурсная задача ММ238 (7 баллов)

Решения принимаются до 27.10.2018

Вася написал на доске k последовательных натуральных чисел и нашел их НОК - V.
Петя написал k последовательных натуральных чисел, больших Васиных, и тоже нашел их НОК - P.
Оказалось, что 2018 < V/P < 2019.
При каком наименьшем k такое возможно?


ММ239

Конкурсная задача ММ239 (10 баллов)

Решения принимаются до 17.11.2018

Существует ли выпуклый многогранник, у которого:
a) не менее половины граней - семиугольники;
b) более половины граней - семиугольники;
с) не менее половины граней - восьмиугольники;
d) более половины граней - восьмиугольники;
e) не менее половины граней - девятиугольники?

Примечание: Если у вас получается, что ответ на пункт «а» отрицательный, а на пункт «b» - положительный, подумайте еще.


ММ240

Конкурсная задача ММ2409 (13 баллов)

Решения принимаются до 01.12.2018

Проективную плоскость разбили несколькими прямыми общего положения. При этом образовалось ровно 17 треугольников. Сколько пятиугольников могло при этом получиться?


Разбор задач


ММ235

Конкурсная задача ММ235 (7 баллов)

Существует ли выпуклый многогранник, у которого равны: количество ребер; количество диагоналей; суммарное количество диагоналей граней?

Решение

Привожу решения Виктора Филимоненкова и Анатолия Казмерчука.

Обсуждение

Некоторые участники конкурса посчитали стартовую цены ММ235 завышенной. Но тот факт, что сразу несколько конкурсантов, приславших решение предыдущих задач, не отозвались на ММ235, свидетельствует, что задачка не так уж и проста.

В качестве верного ответа засчитывалось предъявление требуемого многогранника в любой форме: изображение в параллельной проекции, граф, словесное конструирования путем разрезания и наращивания известных тел, модель (правда, моделей никто не прислал :-))

Один дополнительный балл начислялся либо перечисление всех (с точностью до вектора граней) подходящих многогранников, либо за доказательства конечности их числа. Естественно наличие обоих данных условий давало два балла.

Награды

За решение задачи ММ235 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 9;
Виктор Филимоненков - 9;
vpb - 8;
Константин Шамсутдинов - 8;
Валентина Колыбасова - 8;
Владимир Чубанов - 8;
Владислав Франк - 7.

Эстетическая оценка задачи - 4.7 балла


ММ234

Конкурсная задача ММ234 (5 баллов)

Функция g(n) натурального аргумента n задается так:
Пусть n натуральное число. Определим f(n) как число, полученное удалением последней цифры из десятичной записи n, увеличенное на квадрат этой цифры.
Например, f(576) = 57 + 36 = 93.
Тогда g(n) = |{n, f(n), f(f(n)), f(f(f(n))), …}|.
Пусть a и b – 2018-значные числа. Может ли оказаться, что g(a) = g(b) + 26?

Решение задачи ММ234


ММ233

Конкурсная задача ММ233 (6 баллов)
Очередной отголосок ЕГЭ в Марафоне

При каких значениях параметра a множество точек плоскости, задаваемых системой
(x - a + 1)2 + (y - 3)2 ≤ 80,
(x - 3)2 + (y - 4a + 1)2 ≤ 20a2,
230 - 2a = |4x + 3y + 115 - a| + |4x + 3y - 115 + a|
является кругом?

Решение задачи ММ233


ММ232

Конкурсная задача ММ232 (6 баллов)

Сколько решений в натуральных числах, имеет уравнение x3 + y3 = z3 - i для каждого i ∈ {1, 2, 4} ?

Я нашел воистину замечательные ответы на эти вопросы, но поля… Надеюсь, у конкурсантов с полями все хорошо.

Решение задачи ММ232


ММ231

Конкурсная задача ММ231 (4 балла)

На сторонах AB, BC и AC египетского треугольника ABC выбрали точки C1, A1 и B1 соответственно. Оказалось, что треугольники AB1C1, BC1A1 и CA1B1 равновелики. Какую часть площади ABC составляет площадь треугольника A1B1C1 при условии, что последний - прямоугольный?

Решение задачи ММ231


 

 


Страница: [[marathon:about]]

marathon/about.1538897488.txt · Последние изменения: 2018/10/07 10:31 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006