Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Математический марафон


Продолжается XXV юбилейный конкурс в рамках Математического марафона!

Стать участником марафона может любой желающий. Некоторые задачи вполне доступны школьникам. Для решения других требуются знания, выходящие за рамки школьного курса. Одни задачи могут показаться вам интересными, а другие - не очень. На вкус и на цвет…

Но если любите поломать голову над нестандартными задачами, участвуйте, не стесняйтесь.

Жду от вас комментариев марафонских задач, а также пожеланий Марафону. Эта обратная связь позволит сделать Марафон интереснее для вас.

Не забывайте, пожалуйста, присылать вместе с Вашими решениями свои эстетические оценки задач по пятибалльной шкале.


Ведущий Марафона — Vladimir letsko

Текущие задачи


ММ247

Конкурсная задача ММ247 (7 баллов) Решения принимаются до 18.10.2019

Пусть k – фиксированное натуральное число. Для натуральных n определим функцию fk(n)=(lcm(n,n+1,…,n+k-1))/(lcm(n+1,n+2,…,n+k)).
Найти наименьшие значения f5(n) и f9(n).


ММ248

Конкурсная задача ММ248 (8 баллов) Решения принимаются до 25.10.2019

Найти наименьшее натуральное k такое, что во множестве {(τ(kn))/(τ(n))|n ∈ N} ровно 13 целых чисел.


ММ249

Конкурсная задача ММ249 (10 баллов) Решения принимаются до 01.11.2019

Пусть k – натуральное число и a – некоторая перестановка 2020-элементного множества. Может ли уравнение xk = a иметь ровно 2020 решений?


ММ250

Конкурсная задача ММ250 (14 баллов) Решения принимаются до 29.11.2019

Найти наименьшее возможное количество ребер выпуклого многогранника, у которого сумма длин ребер равна сумме длин диагоналей.


Разбор задач


ММ246

Конкурсная задача ММ246 (7 баллов)

Сколько (с точностью до подобия) существует разносторонних треугольников, разрезаемых на два равнобедренных более чем одним способом?

Решение

Привожу решения Константина Шамсутдинова, Виктора Филимоненкова и авторское.

Обсуждение

ММ246 оказалась трудным орешком. Половина конкурсантов потеряли нужные (нашли лишние) треугольники. Особенно странным оказалось именно приобретение лишних решений. Ведь, в отличие от потери нужных, эта ошибка легко проверяется. Правда, за один (наиболее удививший меня) лишний треугольник я не стал штрафовать нашедшего его участника. Речь идет о прямоугольном равнобедренном треугольнике, который, в силу своей равнобедренности, в ответ включен не был, но в остальном, по мнению приведшего его участника, удовлетворял условию (?!).

Кстати, требование разносторонности треугольника попало в условие только на основании того, что я так и не смог решить считать ли, например, биссектрисы углов при основании треугольника с углами 36, 72, 72 градуса разными разрезами.

Мне представляется, что задача становится проще, а перебор прозрачнее, если сразу договориться об упорядочивании углов исходного треугольника. К моему удивлению этим путем пошли менее половины участников. Тем не менее, некоторые из тех, кто не упорядочивал углы исходного треугольника, добрались до верного ответа ;-)

Любопытно, что в ответ пошло два треугольника, где требуемые разрезы выходят из разных вершин, и один с разрезами,исходящими из одной вершины.

К вопросу о красоте.
ММ246, с моей точки зрения, одна из лучших в текущем конкурсе. Но с этим мнением согласны не все. Что ж, как говорится, о вкусах не спорят.
Спорить не буду, но попробую проаргументировать свои предпочтения.
Часто наличие нескольких, а не одного решения - безусловный минус задачи. Так было бы, например, с ММ244. И я был бы согласен с теми, кто поставил мне в вину наличие нескольких решений, если бы решений на самом деле было больше одного. Но для ММ246 наличие трех решений кажется украшением, а не дефектом задачи. Ведь они - принципиально разные. Например, два равнобедренных треугольника с углами 36, 72, 72 (градусов) и 36, 36, 108 (градусов) - разные, но не принципиально. Каждый из них возникает при разрезании другого на два равнобедренных. А для разносторонних, попавших в ответ это не так. Ну и треугольник с наименьшим углом п/13, IMHO, сам по себе красив в качестве ответа.
Свою позицию я прояснил. Готов выслушать аргументы противоположного толка.

Награды

За решение задачи ММ246 участники Марафона получают следующие призовые баллы:
Александр Домашенко - 7;
Анатолий Казмерчук - 7;
Константин Шамсутдинов - 7;
Мераб Левиашвили - 7;
Виктор Филимоненков - 7;
Валентина Колыбасова - 5;
Валентин Пивоваров - 5;
Владислав Франк - 5;
Анна Букина - 5;
Владимир Дорофеев - 4.

Эстетическая оценка задачи - 4.7 балла


ММ245

Конкурсная задача ММ245 (5 баллов)

В остроугольном треугольнике ABC провели высоту BH. Найти отношение площадей треугольников ABH и CBH, если первый из них подобен треугольнику из своих медиан, а второй – треугольнику из своих высот.

Решение

Привожу решения Анатолия Казмерчука, Валентины Колыбасовой (оба, как обычно, подробные, с чертежами) и Виктора Филимоненкова (как обычно, краткое, хотя и не самое краткое).

Обсуждение

ММ245 не вызвала больших затруднений у участников. Изъятые баллы - следствие, скорее, недостаточной аккуратности. Хотя у меня были сомнения, стоит ли вообще изымать баллы. Ведь в условии сказано просто «найти отношение площадей», а не «найти отношение площади первого к площади второго».

Дополнительный балл добавлен за переформулировку задачи таким образом, чтобы ответ стал единственным. У меня тоже возникало желание добиться единственности ответа. Но я не стал делать этого, решив отловить тех, кто потеряет один ответ. Капкан не сработал.

Награды

За решение задачи ММ245 участники Марафона получают следующие призовые баллы:
Александр Домашенко - 6;
Анатолий Казмерчук - 5;
Константин Шамсутдинов - 5;
Мераб Левиашвили - 5;
Виктор Филимоненков - 5;
Анна Букина - 5;
Валентина Колыбасова - 5;
Владимир Дорофеев - 5;
Владислав Франк - 4;
Валентин Пивоваров - 4.

Эстетическая оценка задачи - 4.3 балла


ММ244

Конкурсная задача ММ244 (6 баллов)

Галя предложила Ане, Боре и Васе такую загадку:
- Я задумала три попарно различных ненулевых цифры. Сейчас я по секрету сообщу Ане сумму квадратов, Боре произведение, а Варе сумму задуманных цифр. Попробуйте отгадать эти цифры. Узнав сумму квадратов произведение и сумму, Аня, Боря и Вася сначала задумались, а затем разговорились:
А: Я не могу определить, что это за цифры.
Б: И я не могу.
В: И я тоже.
A: Тогда я их знаю!
Б: После этой реплики и я их знаю.
Что это за тройка цифр?
Примечание: У Ани, Бори и Васи все хорошо с арифметикой и логикой.

Решение

Привожу решения Анатолия Казмерчука и Константина Шамсутдинова.

Обсуждение

ММ244 оказалась первой задачей юбилейного конкурса, вызвавшей серьезные затруднения у участников. В отличие от большинства трудных задач из предыдущих конкурсов, затруднения не остановили конкурсантов и они прислали решения. Тем самым, трудности возникли уже у ведущего:
найти ошибку в длинном правдоподобном решении;
разобраться в программе, написанной на неизвестном языке, и присланной вместо решения;
как оценивать логическую ошибку при верной арифметике;
как оценивать арифметическую ошибку при верной логике, не повлиявшую на ответ;
как оценивать арифметическую ошибку при верной логике, повлиявшую на ответ;
наконец, как оценить верный ответ при отсутствии решения.

Отмечу, что перечисленные ситуации (наряду с тему, которые не вызвали вопросов) встречаются в присланных решениях.

Наиболее коварный момент в задаче - второе заявление Бори. Сразу несколько конкурсантов проигнорировали начало этого заявления… и получили лишние решения. Меня удивило, что это их не удивило (иначе они бы перепроверили свои рассуждения).

Представленные ниже призовые баллы - плод моих мучительных раздумий и рандомных порывов. Так что, не судите строго (как старался делать и я).

На FB можно найти несколько разновидностей ММ244, предложенных Константином Кнопом. Там же есть решение Олега Полубасова (ушедшего в марафонское подполье).

Награды

За решение задачи ММ244 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 7;
Константин Шамсутдинов - 6;
Мераб Левиашвили - 6;
Владислав Франк - 6;
Виктор Филимоненков - 5;
Анна Букина - 4;
Валентин Пивоваров - 4;
Валентина Колыбасова - 3;
Антон Никонов - 3;
Александр Домашенко - 3;
Лев Песин - 3.

Эстетическая оценка задачи - 4.4 балла


ММ243

Конкурсная задача ММ243 (5 баллов)⊥

В треугольнике ABC a<b<c и a⋅la=c⋅lc Найти угол β.

Решение

Привожу решения Анатолия Казмерчука, Валентины Колыбасовой и Анны Букиной (только они не поленились сделать чертежи).

Еще одно решение (Виктора Филимоненкова) - пример одного из наиболее кратких решений

Обсуждение

Задача не вызвала затруднений у конкурсантов. Зато присланные решения довольно разннобразны.
Тем самым, они оправдали ожидания ведущего, получившего данный результат в качестве побочного продукта при решении более сложной задачи. Соответственно, и решение ММ243 получилось весьма громоздким. Искать более простые решения ведущий не стал (хотя подозревал, что они есть), доверив это участникам Марафона.

Награды

За решение задачи ММ243 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 6;
Александр Домашенко - 5;
Константин Шамсутдинов - 5;
Мераб Левиашвили - 5;
Владислав Франк - 5;
Валентина Колыбасова - 5;
Анна Букина - 5;
Валентин Пивоваров - 5;
Виктор Филимоненков - 5;
Антон Никонов - 3.

Эстетическая оценка задачи - 4.4 балла


ММ242

Конкурсная задача ММ242 (5 баллов)

На сайте проводится опрос, кого из m номинированных футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует один раз за одного футболиста. На сайте отображается рейтинг каждого футболиста - доля голосов, отданных за него, в процентах, округленных до целого числа. После того, как проголосовали n посетителей, суммарный рейтинг номинантов составил 95%.
a) При каком наименьшем m такое возможно?
b) При каком наименьшем n такое возможно?
c) При каком наименьшем m+n такое возможно?

Решение

Привожу решения Анатолия Казмерчука и Валентины Колыбасовой.

Обсуждение

Судьбу задачи ММ242 решал ответ на 3-й вопрос. Придумав условие, я сразу для себя решил, что если в наименьшем m+n не будут участвовать ни наименьшее m, ни наименьшее n, то задача будет достаточно интересна, а в противном случае - скучна. О том, что можно будет заменить в условии число 95 (взятое от фонаря) я в тот момент почему-то не думал.

Я был уверен, что наиболее сложен пункт c, и ожидал ошибок именно там. К чести конкурсантов с этим пунктом справились все. Но одному из участников неожиданно не покорился пункт b. Еще более неожиданной для меня были две попытки дать неверный ответ к пункту a, в связи с альтернативной трактовкой термина «округление». Мудрые составители ЕГЭ-шной задачи (коей навеяна ММ242) дали полное определение правил округления прямо в условии, а я был уверен, что у конкурсантов с этим проблем не будет…

Любопытны примеры, приведенные участниками в подтверждение ответа 11 к пункту a. В них встретились следующие значения n:
29 - 3 раза;
31 - 2 раза;
67 - 1 раз;
73 - 1 раз;
201 - 2 раза;
10000 - 2 рвза.

Я не стал штрафовать участников ни за неверное утверждение, что минимальное n, при котором достигается m = 11, равно 31 (ведь в задаче про это не спрашивалось), ни за краткость в обоснованиях, полагая, что ссылка на перебор, с правильным указанием границ перебора является (при наличии верного ответа) достаточным обоснованием.

Я ожидал достаточно массового упоминания того факта, что суммарный рейтинг может быть любым целым числом в пределах от 0 (например, каждый из 201 номинантов получил по 1 голосу) до 200 (например, каждый из 200 номинантов получил по 1 голосу). Однако данное утверждение обнаружилось лишь в одной работе и было поощрено дополнительным баллом.

Награды

За решение задачи ММ242 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 6;
Владимир Дорофеев - 6;
Александр Домашенко - 5;
Константин Шамсутдинов - 5;
Мераб Левиашвили - 5;
Владислав Франк - 5;
Валентина Колыбасова - 5;
Антон Никонов - 5;
Анна Букина - 5;
Валентин Пивоваров - 5;
Виктор Филимоненков - 4.

Эстетическая оценка задачи - 4.5 балла


ММ241

Конкурсная задача ММ241 (4 балла)

При каких натуральных n множество {1, 2, …, n} можно разбить на два подмножества так, что произведение элементов первого подмножества равно сумме элементов второго?

Решение

Привожу решения Александра Домашенко и Валентины Колыбасовой.

Обсуждение

На первую задачу юбилейного Марафонского конкурса поступило 10 решений. Радует появление сразу троих новых участников. Огорчает исчезновение примерно такого же числа участников предыдущего конкурса. Призываю их подключиться к конкурсу со следующей задачи.

Задача ММ241 не вызвала затруднений у большинства конкурсантов. Но был один момент, вызвавший разногласия участников. Он касается разрешимости задачи для значений n=1 и n=3. Участники разделись на 3 категории:
первые (Константин Шамсутдинов и Владислав Франк) считают, что задача разрешима для каждого из этих n;
вторые (их большинство) полагают, что задача разрешима для n=3, но не для n=1;
наконец Александр Домашенко придерживается мнения, что задача не разрешима для обоих упомянутых n.

Александр не проаргументировал свое мнение, что постановка задачи имеет смысл, начиная с n=4. Полагаю, он отталкивался от бинарности операций сложения и умножения. Аргументы Владислава и Константина - произведение элементов пустого множества равно 1, поэтому для n=1 можно поместить 1 в первое подмножество, а во второе не помещать ничего. Я согласен с аргументом про произведение элементов пустого множества, но… В формулировке идет речь о разбиении. А в разбиении по определению участвуют только непустые подмножества. Поэтому (а вовсе не из конформизма) я склонен присоединиться к большинству. Но при этом не снижал баллы тем, кто придерживается альтернативных мнений.

Дополнительные баллы начислены за успешный поиск разбиений, не попадающих под общее описание (упоминание наличия таких разбиений и прведение единичного примера не учитывались). Мераб Левиашвили предложил несколько простых вариаций на тему задачи. Уточняю для него и других новичков Марафона, что дополнительными баллами такие предложения оцениваются при условии, что они содержат какие-то продвижения в указанных направлениях (ну, или если покажутся ведущему неожиданными и очень красивыми).

Напоминаю как новичкам, так и некоторым забывчивым старожилам, что я жду от вас эстетических оценок предлагаемых задач.

Награды

За решение задачи ММ241 участники Марафона получают следующие призовые баллы:
Александр Домашенко - 6;
Константин Шамсутдинов - 5;
Анатолий Казмерчук - 4;
Мераб Левиашвили - 4;
Виктор Филимоненков - 4;
Владислав Франк - 4;
Валентина Колыбасова - 4;
Антон Никонов - 4;
Владимир Дорофеев - 4;
Анна Букина - 2.

Эстетическая оценка задачи - 4.5 балла


ММ240

Конкурсная задача ММ2409 (13 баллов)

Проективную плоскость разбили несколькими прямыми общего положения. При этом образовалось ровно 17 треугольников. Сколько пятиугольников могло при этом получиться?

Решение

Привожу решения Виктора Филимоненкова, Константина Шамсутдинова и Анатолия Казмерчука.

Обсуждение

Задача ММ240 - побочный продукт попытки найти решение другой задачи.
Я пытался понять, верно ли, что любом n>4 можно найти такое расположение n прямых общего положения на проективной плоскости, что в разбиении будут возникать только треугольники, четырехугольники и пятиугольники. Мы с ученицей (которой я предложил эту задачу) довольно быстро продвинулись в деле отыскания все больших n, но на общий принцип (а есть ли он?) так и не вышли. Надо будет внимательнее присмотреться к подходам, предложенным конкурсантами. Возможно, они помогут решить и задачу-предшественник.

В условии фиксировалось количество треугольников, но не прямых. Любопытно, что, доказывая реализуемость возможных значений пятиугольников приводили конфигурации с различными количествами прямых:
Виктор Филимонеков использовал от 9 до 11 и от 15 до 17 прямых:
Анатолий Казмерчук от 12 до 17 прямых;
в авторском решении участвуют от 9 до 17 прямых, исключая 15.
Наиболее красиво в этом плане решение Константина Шамсутдинова, в котором все конфигурации построены по единой схеме с использованием только 17 прямых (мне до сих пор не верится, что такое возможно).

За сим заканчиваю обзор завершающей задачи XXIV Марафонского конкурса и приступаю к: подведению итогов; поиску ошибок в решении Константина; размышлению над тем, почему никто не догадался использовать 18 прямых :-)

Награды

За решение задачи ММ240 участники Марафона получают следующие призовые баллы:
Константин Шамсутдинов - 16;
Анатолий Казмерчук - 15;
Виктор Филимоненков - 13;
Владимир Чубанов - 7.

Эстетическая оценка задачи - 4.7 балла


ММ239

Конкурсная задача ММ239 (10 баллов)

Решения принимаются до 17.11.2018

Существует ли выпуклый многогранник, у которого:
a) не менее половины граней - семиугольники;
b) более половины граней - семиугольники;
с) не менее половины граней - восьмиугольники;
d) более половины граней - восьмиугольники;
e) не менее половины граней - девятиугольники?

Примечание: Если у вас получается, что ответ на пункт «а» отрицательный, а на пункт «b» - положительный, подумайте еще.

Решение задачи ММ239

Решение

Привожу решения Виктора Филимоненкова и Анатолия Казмерчука.

Обсуждение

Ровно в половине всех присланных (и всех приведенных) решений авторы обошлись без картининок. Чтобы восполнить этот пробел, приведу пару своих картинок (зря, чтоли рисовал?).
Первый рисунок иллюстрирует ответы сразу к трем пунктам задачи: a), b), c). Отрезав от додекаэдра красные вершины, получим многогранник в котором более (а значит, и не менее) половины граней являются семиугольниками. Если же наоборот, оставить красные вершины, а остальные отрезать, получим многогранник, в котором ровно половина граней - восьмиугольники.

[url=https://radikal.ru][img]https://c.radikal.ru/c29/1811/ee/fe9c0eb0fc7c.png[/img][/url]

На втором рисунке приведен граф многогранника с вектором граней (28,0,0,4,0,36), обосновывающий положительный ответ к пункту d).

[url=https://radikal.ru][img]https://b.radikal.ru/b16/1811/db/cc6dba0522fa.jpg[/img][/url]
ММ239 (как и ММ235) - это отголосок XXII Марафонского конкурса, посвященного данной тематике. Участники, пропустившие тот конкурс, вынуждены были переотрывать утверждения типа Теоремы Эберхарда etc (конечно, можно было просто найти нужные результаты в сети, но наши конкурсанты не ищут легких путей :-)). С удовольствием констатирую, что нашлись те, кто преодолел эти трудности (были ли те, кто не смог - неизвестно, они решений не прислали).
Изучение вопроса о верхней грани отношения количества k-угольных граней к общему числу граней (6\le k\le 12) поощрялось дополнительными баллами. В случае vpb, это поощрение скомпенсировалось сбавкой за штейнеровское отношение к читателю :-). (Каюсь, сам я работ Якоба Штейнера в первоисточнике не читал, но, говорят, он свои сугубо геометрические выкладки вообще не снабжал чертежами.) Остальные изъятия сделаны либо за отсутствие примеров на некоторые пункты, либо за присутствие примеров с невозможными многогранниками (с нецелым количеством ребер :-)) Волшебное превращение восьмиугольных граней в семиугольные (при склейке по общей треугольной грани) я оценивать не стал :-)

Награды

За решение задачи ММ239 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 12;
Владимир Чубанов - 11;
vpb - 10;
Константин Шамсутдинов - 10;
Виктор Филимоненков - 9;
Владислав Франк - 6.

Эстетическая оценка задачи - 4.8 балла


 

 


Страница: [[marathon:about]]

marathon/about.1571453113.txt · Последние изменения: 2019/10/19 05:45 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006