Математический факультетИнформация для студентовЭлектронная библиотека
Карта сайтаКарта сайта
Недавние измененияНедавние изменения
ПоискПоиск
  
Вы посетилиВы посетили
История страницыИстория страницы
  
Вход/выходВход


Это старая версия документа.


Математический марафон


Предлагаю вашему вниманию задачи очередного XXVII марафонского конкурса!

Напоминаю, что в былые времена проходило по два конкурса в год. Будет ли так в 2021 году, покажет время.

Стать участником марафона может любой желающий. Некоторые задачи вполне доступны школьникам. Для решения других требуются знания, выходящие за рамки школьного курса. Одни задачи могут показаться вам интересными, а другие - не очень. На вкус и на цвет…

Но если вы любите поломать голову над нестандартными задачами, участвуйте, не стесняйтесь.

Жду от вас комментариев марафонских задач, а также пожеланий Марафону. Эта обратная связь позволит сделать Марафон интереснее для вас.

Не забывайте, пожалуйста, присылать вместе с Вашими решениями свои эстетические оценки задач по пятибалльной шкале.

Ведущий Марафона — Vladimir letsko


Текущие задачи



Вектором граней выпуклого многогранника P назовем набор [f3, f4, …, fs], где fi – количество i-угольных граней P, а s - наибольшее число сторон грани. Будем говорить, что P относится к классу m, если max(fi) = m.

ММ270

Конкурсная задача ММ270 (16 баллов)

Решения принимаются до 22.05.2021

Найти наибольшее возможное количество граней многогранника класса m.


Разбор задач


ММ269

Конкурсная задача ММ269 (11 баллов)

Какова максимальная возможная степень вершины выпуклого многогранника
a) класса 3;
b) класса 4?

Решение

Привожу решения Олега Полубасова, Анатолия Казмерчука и Константина Шамсутдинова.

Обсуждение

Согласно традициям Марафона последние задачи каждого конкурса имеют повышенную сложность. Эта традиция сохранилась и в данном конкурсе. Результатом этого усложнения чаще всего был отток значительной части конкурсантов. А эта традиция неожиданно была нарушена! Из тех, кто регулярно участвовал в нынешнем конкурсе, не прислали решения ММ269 всего два человека. А остальные порадовали, но не пощадили ведущего :-) Впрочем, после моей мольбы, все же сжалились, сократив самое длинное из решений на 40(!) страниц.

Разумеется, основные страсти кипели вокруг обобщения задачи, очевидного по постановке вопроса. Но только по постановке. Да-да, ответ 3m-3 не годится! В какой-то момент у меня имелось три решения, в которых приводилась и обосновывалась точная формула для максимальной возможной степени вершины m-многогранника. Точнее, три разных формулы, дающих разные ответы :-)
Понимая, что ситуация, когда «Вася и Петя оба правы», маловероятна, ведущий был вынужден углубиться в многостраничные трактаты, воспользовавшись удачно подвернувшейся просьбой продлить срок приема решений. Дополнительное время не пропало даром. И ведущий и конкурсанты обнаружили некоторые ошибки и неточности в решениях. Во всех, кроме одного, в котором ошибок найти не удалось (или, все же, пока не удалось?). Желающие могут попробовать определить это решение из приводимого ниже списка начисленных призовых баллов (а также попытаться найти ошибки и в этом решении).

Награды

За решение задачи ММ269 участники Марафона получают следующие призовые баллы:
Олег Полубасов - 18;
Мераб Левиашвили - 16;
Анатолий Казмерчук - 13;
Константин Шамсутдинов - 13;
Василий Дзюбенко - 11;
Александр Романов - 11;
Виктор Филимоненков - 11;
Денис Овчинников - 7.

Эстетическая оценка задачи - 4.7 балла


ММ268

Конкурсная задача ММ268 (9 баллов)

Назовем натуральное число m допустимым, если существует такое n, что из чисел 1,2,…,n можно составить сумму произведений, в которой каждое число встречается ровно один раз, равную m. Сколько существует недопустимых чисел?

Примечание: в суммах произведений допускаются одиночные слагаемые. Например, число 148 допустимо, поскольку 148=1·3 + 2·5·8 + 4 + 6·9 + 7.

Решение

Привожу решения Виктора Филимоненкова (для поклонников сестры таланта), Анатолия Казмерчука и Мераба Левиашвили.

Обсуждение

К устаканившемуся составу конкурсантов присоединился еще один участник. Точнее, это они к нему присоединились: Михаил Ватник прислал свое решение ММ268 сразу после обнародования задач XXVII конкурса.

Больших затруднений задача не вызвала (вопреки тому, что казалась мне непростой).

Мне понравился ответ к этой задаче. Набор 4, 8, 13 на первый взгляд кажется случайным. И лишь при погружении в задачу становится ясно, что это уменьшенные на 2 треугольные числа.

Влад Франк отметил и обосновал интуитивно очевидный факт: для подходящих достаточно больших чисел количество представлений может быть сколь угодно большим.
Анатолий Казмерчук и Мераб Левиашвили напротив сосредоточили внимание на числах, допускающих малое количество представлений. При этом представления, отличающиеся лишь порядком слагаемых, разумеется, не различались. А вот представления, полученные переброской сомножителя 1 в другое слагаемое, Анатолий считал различными. А Мераб рассмотрел обе возможные трактовки. При этом Мераб рассмотрел не только числа, имеющие единственное представление, но и допускающие по два, по три… представления. Правда, как ему удалось обнаружить второе представление для числа 12, для меня осталось загадкой :-)

Награды

За решение задачи ММ268 участники Марафона получают следующие призовые баллы:
Мераб Левиашвили - 12;
Анатолий Казмерчук - 11;
Владислав Франк - 10;
Василий Дзюбенко - 9;
Денис Овчинников - 9;
Александр Романов - 9;
Константин Шамсутдинов - 9;
Виктор Филимоненков - 9;
Олег Полубасов - 9;
Владимир Дорофеев - 9;
Михаил Ватник - 9.

Эстетическая оценка задачи - 4 балла


ММ267

Конкурсная задача ММ267 (7 баллов)

Вася и Петя поспорили. Вася уверен, что среди представлений натурального числа n в виде суммы натуральных слагаемых чаще встречаются те, у которых каждое слагаемое присутствует не более двух раз, чем те, у которых все слагаемые не кратны 3. Петя уверен в обратном. Кто из них прав?

Решение

Привожу решения Виктора Филимоненкова (с примером, добавленным Виктором по моей просьбе), Анатолия Казмерчука и Александра Романова.

Обсуждение

В условие ММ267 ведущим (неосознанно) была заложена (очередная) логико-лингвистическая бомба. Итак, в чем же уверен Петя?!
Я уверен, что Петя уверен, будто представления первого вида встречаются реже, чем представления второго. Ведь именно «реже» (а отнюдь не «не чаще») является обратным бинарным отношением к отношению «чаще». Разумеется, при такой интерпретации Петя не прав.
Большинство же конкурсантов полагают, что Петя уверен в том, что Вася не прав. Ясно, что в этом случае Петя прав.
В результате ведущему вновь пришлось прибегать к «соломонову решению». Точнее, к решению мудреца из анекдота, который заверил каждого из спорщиков, что он прав. Правы и те, кто считает, что Петя прав, и те, что полагает, что он не прав, и те, кто рассмотрел оба подхода, и те (нашлись и такие дипломаты), кто не упомянул вопрос о Петиной правоте в своем решении. Главное, чтобы в решении было показано, что представлений каждого вида поровну.

В большинстве решений строилась биекция между множествами представлений. При этом одни конкурсанты строили биекцию между исходными множествами, другие - между их дополнениями, третьи - между теоретико-множественными разностями исходных множеств. В приводимых решениях отражены и иные подходы.

Я не поощрял дополнительными баллами очевидные обобщения, в которых 3 заменено произвольным натуральным числом. А вот более хитрые изыскания Мераба и Анатолия отметил.

Награды

За решение задачи ММ267 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 9;
Мераб Левиашвили - 9;
Василий Дзюбенко - 7;
Денис Овчинников - 7;
Владислав Франк - 7;
Александр Романов - 7;
Константин Шамсутдинов - 7;
Виктор Филимоненков - 7;
Олег Полубасов - 7;
Владимир Дорофеев - 7.

Эстетическая оценка задачи - 4.6 балла


ММ266

Конкурсная задача ММ266 (7 баллов)

Вася Пупкин выписал дни рождения семерых своих однокурсников, родившихся в январе одного и того же года, что и Вася, и, поэкспериментировав с выписанными числами, заметил два факта:
1) τ(n3 )=τ(n)2, где n – произведение всех выписанных чисел;
2) сумма кубов составных чисел больше суммы кубов остальных\\. Найдите дни рождения Васиных товарищей, если известно, что все они младше Васи.

Примечание: при сравнении возрастов учитываются дни, но не часы рождения.

Решение

Привожу решения Василия Дзюбенко, Анатолия Казмерчука и Мераба Левиашвили.

Обсуждение

Вскоре после опубликования условий задач XXVII Марафонского конкурса Олег Полубасов поднял вопрос о неоднозначности ответа в ММ266. Тут бы ведущему и проверить условие еще раз. Но события развивались по другому сценарию. Ведущий, используя аргументацию с стиле Паниковского («А какие же они по-вашему?!») сумел переубедить Олега столь радикально, что тот уменьшил количество решений до одного.
Но победа ведущего оказалась пирровой, поскольку, на самом деле, решений оказалось два (я потерял решение с одним составным числом). Очередной (и не последний) раз размышляя, как разруливать возникшую ситуацию я пришел к такому «соломонову» решению: нашедшим одно решение ставить за задачу полный балл (ведь они решили задачу не хуже ведущего, да и итог обсуждения с Олегом как-бы подсказывал, что второго решения искать не надо), а нашедших оба решения поощрять дополнительным баллом (как обычно дополнительные баллы раздаются более скупо, чем основные).

Обобщать задачу взялись два конкурсанта. Причем в принципиально разных (перпендикулярных) направлениях.
Мераб Левиашвили, оставив незыблемым условие τ(n3 )=τ(n)2 (а значит, и попарную взаимную простоту дней рождения), занялся рассмотрением задачи в других календарях.
Анатолий Казмерчук, наоборот, сосредоточил свое внимание на на уравнении τ(na )=τ(n)b
Рассуждения Анатолия представляются мне более интересными (менее искусственными). Впрочем, возможно, это лишь моя субъективная «кочка зрения».

Награды

За решение задачи ММ266 участники Марафона получают следующие призовые баллы:
Анатолий Казмерчук - 10;
Мераб Левиашвили - 9;
Василий Дзюбенко - 8;
Денис Овчинников - 8;
Владислав Франк - 8;
Александр Романов - 8;
Константин Шамсутдинов - 8;
Виктор Филимоненков - 8;
Олег Полубасов - 7;
Владимир Дорофеев - 7.

Эстетическая оценка задачи - 4.3 балла


ММ265

Конкурсная задача ММ265 (5 баллов)

Разрезать правильный треугольник на наименьшее возможное количество прямоугольных треугольников так, чтобы никакие два из возникших треугольников не были подобны.

Решение

Привожу решения Олега Полубасова, Анатолия Казмерчука и Василия Дзюбенко. Решение Мераба Левиашвили доступно на https://dxdy.ru/post1513965.html#p1513965

Обсуждение

Задача не вызвала затруднений у конкурсантов. И в целом понравилась им (больше чем ведущему). Многие участники не ограничились решением базовой задачи, но и обобщили результаты.mm265_polubasoff.pdf Так, Васлий Дзюбенко и Анатолий Казмерчук рассмотрели минимальные количества «бесподобных» прямоугольных треугольников, на которые могут быть разрезаны треугольники произвольного вида. Оказалось, что наряду с правильными этот минимум равен 4 для тупоугольных равнобедренных треугольников (тот же результат без обоснования указал Владимир Дорофеев). Обобщения от Олега Полубасова и Мераба Левиашвили были с связаны с разрезанием правильных многоугольников с бОльшим числом сторон. И поставили перед ведущим целый ряд проблем по оцениванию их достижений. Так, Мераб не нашел разрезания квадрата на 5 треугольников, но при этом смог достичь результата 2n-3 чля четных n>6 (у Олега 2n-2). C другой стороны, Олег и не утверждал, что его результаты окончательны, А Мераб назвал результат 6 для квадрата «абсолютным минимумом». После некоторых размышлений я поощрил Олега и Мераба равным количеством баллов.

Возвращаясь к базовой задаче отмечу симпатичное разрезание правильного треугольника, в котором все углы всех треугольников образуют арифметическую прогрессию с шагом 10^o. Большинство конкурсантов привели в качестве примера именно его.

Награды

За решение задачи ММ265 участники Марафона получают следующие призовые баллы:
Мераб Левиашвили - 8;
Олег Полубасов - 8;
Анатолий Казмерчук - 7;
Василий Дзюбенко - 6;
Денис Овчинников - 5;
Владислав Франк - 5;
Александр Романов - 5;
Константин Шамсутдинов - 5;
Виктор Филимоненков - 5;
Владимир Дорофеев - 5.

Эстетическая оценка задачи - 4.6 балла


ММ264

Конкурсная задача ММ264 (4 балла)

Назовем пару натуральных чисел a и b аддитивной, если τ(a+b)=τ(a)+τ(b),σ(a+b)=σ(a)+σ(b) и φ(a+b)=φ(a)+φ(b). Доказать, что существует бесконечно много аддитивных пар.

(τ(n), σ(n), φ(n) - количество натуральных делителей, сумма натуральных делителей и функция Эйлера соответственно.)

Решение

Привожу решения Олега Полубасова и Мераба Левиашвили.

Обсуждение

Рекордно низкая эстетическая оценка ММ264 могла бы быть значительно выше. Самые низкие оценки сопровождались приписками, что они могут быть существенно повышены, если будет предъявлен способ конструирования аддитивных пар, не основанный на переборе. Впрочем, сами строгие оценщики не верили в существование такого решения.
Не верил в решение, не основанное на переборе, и ведущий. Но надеялся, что конкурсанты предложат хотя и переборный, но высоко эффективный способ конструирования примитивных (не получаемых из других домножением на одно число) аддитивных пар. Примерно такой, какой был предложен для http://www-old.fizmat.vspu.ru/doku.php?id=marathon:problem_163. (Обладатели моей книжки про Марафон могут найти в ней обобщение способа, изложенного в ММ163.)
Отчасти эти надежды оправдались. Мераб Левиашвили предложил способ поиска аддитивных пар, в которых числа a, b и a+b имеют фиксированное каноническое разложение. После того как были назначены конкретные значения двум из шести простым числам, фигурирующим в решении, остальные были найдены конечным и совсем коротким ручным перебором.
Такой подход был бы хорош, если бы не одно «но». Я не уверен, что другие назначения, отличные от c=2? e=3, приведут к нахождению еще хотя бы одной аддитивной пары. Так что, успех на пути, выбранном Мерабом, выглядит, скорее случайным, чем закономерным. (Еще одна претензия к решению Мераба связана с загадочной формулой в третьей строке второй страницы его решения.) Не исключено, что можно получать аддитивные пары (а точнее тройки), стартуя с других канонических разложений a, b и a+b. Однако, среди примитивных наборов найденных Олегом Полубасовым (а он нашел больше всего таких наборов), вид канонического разложения всех трех чисел (a, b и a+b) не повторяется ни разу. Так что, способ конструирования серий примитивных наборов пока не вырисовывается.

Награды

За решение задачи ММ264 участники Марафона получают следующие призовые баллы:
Мераб Левиашвили - 5;
Олег Полубасов - 5;
Анатолий Казмерчук - 4;
Денис Овчинников - 4;
Василий Дзюбенко - 4;
Владислав Франк - 4;
Александр Романов - 4;
Константин Шамсутдинов - 3;
Виктор Филимоненков - 2;
Владимир Дорофеев - 2.

Эстетическая оценка задачи - 3.1 балла


ММ263

Конкурсная задача ММ263 (4 балла)

Сколько решений может иметь уравнение [3x]{x} – [x]{3x} = c, в зависимости от значения параметра c?

([x] и {x} означают соответственно целую часть (пол) и дробную часть числа x.)

Решение задачи ММ263

Решение

Привожу решения Анатолия Казмерчука, Мераба Левиашвили и Влада Франка.

Обсуждение

Задача ММ263, с одной стороны, не вызвала затруднений конкурсантов, а с другой - не слишком им понравилась. Возможно, именно по этой причине, большинство марафонцев не попытались обобщить задачу (а если бы бы попытались, возможно, задача понравилась им больше).
Лишь двое участников взялись за исследование более общего уравнения [ax]{x} – [x]{ax} = c. Анатолий Казмерчук ограничился рассмотрением натуральных a. Уже для этого случая максимальное количество решений (при ненулевом c) ведет себя довольно интересно. С ростом a оно ожидаемо растет, но не монотонно.
Мераб Левиашвили пошел дальше. Он рассмотрел (не то чтобы изучил, но затронул) случаи рационального и даже произвольного вещественного a. Уже в первом из них в области определения можно выделить участки, на которых функция функция f(x)= [3x]{x} – [x]{3x} монотонно убывает при положительном a (при натуральных a такое невозможно).
И уж совсем сложно функция f(x) ведет себя при иррациональных a.

Награды

За решение задачи ММ263 участники Марафона получают следующие призовые баллы:
Мераб Левиашвили - 6;
Анатолий Казмерчук - 5;
Олег Полубасов - 4;
Денис Овчинников - 4;
Виктор Филимоненков - 4;
Владислав Франк - 4;
Константин Шамсутдинов - 4;
Александр Романов - 4;
Владимир Дорофеев - 4;
Василий Дзюбенко - 4.

Эстетическая оценка задачи - 3.5 балла


ММ262

Конкурсная задача ММ262 (3 балла)

Разносторонний треугольник назовем прогрессивным, если длины его сторон образуют арифметическую прогрессию. Доказать, что треугольник прогрессивен тогда и только тогда, когда прямая, проходящая через точку Нагеля и центр Шпикера, параллельна средней стороне.

Примечание: тривиальное решение (недаром цена задачи всего 3 балла) на ЕГЭ бы не приняли, но у нас, слава Богу, не ЕГЭ :-)

Решение задачи ММ262


ММ261

Конкурсная задача ММ261 (4 балла)

Натуральные числа 1, 2, 3, …, 100 разбили на 10 групп по 10 чисел. Найти наибольшую возможную сумму НОД этих десяток.

Решение задачи ММ261


 

 


Страница: [[marathon:about]]

marathon/about.1621142723.txt · Последние изменения: 2021/05/16 08:25 — letsko
Powered by DokuWiki  ·  УКЦ ВГПУ 2006